
CHAPTER 3

Geometric preliminaries

In this chapter we discuss certain geometric prelimi-

naries required for studying the geodesic X-ray transform

on a general compact Riemannian manifold (M, g) with

boundary. We will discuss the concept of a compact non-

trapping manifold with strictly convex boundary. We will

also introduce the exit time function τ(x, v), the geodesic

vector field X, geodesic flow ϕt, and the scattering rela-

tion α and study their basic properties. The chapter will

conclude with the important notion of a simple manifold,

including several equivalent definitions.

3.1. Non-trapping and strict convexity

Let (M, g) be a compact, connected and oriented Rie-

mannian manifold with smooth boundary ∂M and dimen-

sion n ≥ 2.

Geodesics travel at constant speed, so we fix the speed

to be one. We pack positions and velocities together in

what we call the unit sphere bundle SM . This consists

79
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of pairs (x, v), where x ∈ M and v ∈ TxM with norm

|v|g = 1, where g is the inner product in the tangent space

at x (i.e. the Riemannian metric). Given (x, v) ∈ SM ,

let γx,v denote the unique geodesic determined by (x, v) so

that γx,v(0) = x and γ̇x,v(0) = v. For any (x, v) ∈ SM the

geodesic γx,v is defined on a maximal interval of existence

that we denote by [−τ−(x, v), τ+(x, v)] where τ±(x, v) ∈

[0,∞], so that

γx,v : [−τ−(x, v), τ+(x, v)]→M

is a smooth curve that cannot be extended to any larger

interval as a smooth curve in M .

Definition 3.1. We let

τ(x, v) := τ+(x, v).

Thus τ(x, v) is the exit time when the geodesic γx,v exits

M .

Exercise 3.2. Give examples of compact manifolds

(M, g) with boundary and points (x, v) ∈ SM where the

following holds:

(a) The first time when γx,v hits ∂M is different from

the exit time τ(x, v).
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(b) τ(x, v) is not continuous on SM .

(c) τ±(x, v) =∞.

(d) τ−(x, v) is finite but τ+(x, v) =∞.

If some geodesic has infinite length, one needs to be

careful when studying the geodesic X-ray transform since

the integral of a smooth function over such a geodesic may

not be finite. For the most part of this book, we will be

working on manifolds where this issue does not appear.

Definition 3.3. We say that (M, g) is non-trapping if

τ(x, v) < ∞ for all (x, v) ∈ SM . Equivalently, there are

no geodesics in M with infinite length.

Example 3.4. Compact subdomains in Rn and in hy-

perbolic space are non-trapping, and so are the small spher-

ical caps in Example 2.22. Large spherical caps, catenoid

type surfaces and flat cylinders have trapped geodesics (see

Examples 2.23–2.25).

Unit tangent vectors at the boundary of M constitute

the boundary ∂SM of SM and will play a special role.

Specifically

∂SM := {(x, v) ∈ SM : x ∈ ∂M}.
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We will need to distinguish those tangent vectors point-

ing inside (“influx boundary”) and those pointing outside

(“outflux boundary”), so we define two subsets of ∂SM

∂±SM := {(x, v) ∈ ∂SM : ±〈v, ν(x)〉g ≥ 0}

where ν denotes the inward unit normal vector to the

boundary. The convention of using the inward unit nor-

mal instead of the outward unit normal will eliminate some

minus signs in the volume form dµ in Section 4.1 and cer-

tain other places. We also denote

∂0SM := ∂+SM ∩ ∂−SM.

Note that one has ∂0SM = S(∂M).

Definition 3.5. The geodesic X-ray transform of a

function f ∈ C∞(M) on a compact non-trapping manifold

(M, g) with smooth boundary is the function If defined

by

(3.1)

If(x, v) =

∫ τ(x,v)

0

f(γx,v(t)) dt, (x, v) ∈ ∂+SM.

The idea is that ifM is non-trapping, then any geodesic

γ going through some point (y, w) ∈ SM has an initial

point (x, v) = γy,w(−τ−(y, w)). One must have (x, v) ∈
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∂SM , since if one had (x, v) ∈ SM int then the geodesic

could be extended further in both directions. Moreover,

one must have (x, v) ∈ ∂+SM since any geodesic starting

at a point in ∂SM \ ∂+SM could be extended further for

small negative times.

The argument in the preceding paragraph shows that

on non-trapping manifolds, there is a one-to-one corre-

spondence between the set of unit speed geodesics and the

set ∂+SM of their initial points. Parametrizing geodesics

by their initial points in ∂+SM means that we are using

the fan beam parametrization of geodesics.

Remark 3.6. Note that the fan beam parametrization

is different from the parallel beam parametrization that we

used in Chapter 1, and also from the parametrization used

in Section 2.4 for geodesics of a radial sound speed under

the Herglotz condition based on their closest point to the

origin.

Since f is smooth and the point γx,v(t) depends smoothly

on (x, v), the formula (3.1) shows that the regularity prop-

erties of If are decided by the regularity properties of the

exit time function τ(x, v). If the boundary of M is not

strictly convex, it can happen that τ is discontinuous. On
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the other hand, if ∂M is strictly convex then τ will be con-

tinuous and in fact smooth in most places, and the theory

will be particularly clean.

For a precise definition of when the boundary ∂M is

strictly convex, we will use the second fundamental form

of ∂M that describes how ∂M sits inside M . Recall that

the (scalar) second fundamental form is the bilinear form

on T (∂M) given by

Πx(v, w) := −〈∇vν, w〉g,

where x ∈ ∂M and v, w ∈ Tx∂M . Here ∇ is the Levi-

Civita connection of g, and on the right hand side ν is

extended arbitrarily as a smooth vector field in M (recall

that ∇XY |x only depends on X|x and the value of Y along

any curve η(t) with η̇(0) = X|x, so that Πx(v, w) does not

depend on the choice of the extension of ν).

Definition 3.7. We shall say that ∂M is strictly con-

vex if Πx is positive definite for all x ∈ ∂M .

The combination of non-trapping with strict convexity

of the boundary will produce several desirable properties.

In fact, many results in this book will be stated either

for compact non-trapping manifolds with strictly convex
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boundary, or for simple manifolds which satisfy the ad-

ditional condition that geodesics do not have conjugate

points.

We already encountered the notion of strict convexity

in Section 2.5, where this notion was related to the be-

haviour of tangential geodesics. We wish to show that a

similar characterization exists in the general case. To do

this, it is convenient to introduce the following notions.

Lemma 3.8 (Closed extension). Let (M, g) be a com-

pact manifold with smooth boundary. There is a closed

(=compact without boundary) connected manifold (N, g)

having the same dimension as M so that (M, g) is isomet-

rically embedded in (N, g).

Proof. (Special case) The lemma has an easy proof in

the special case where M is a subset of Rn. In that case it

is enough to consider some cube N = [−R,R]n with M ⊂

N int, and to extend g smoothly as a 2R-periodic positive

definite symmetric matrix function in N . Identifying the

opposite sides of N , we see that (N, g) becomes a torus

with (M, g) embedded in its interior. Then (N, g) is the

required extension. �
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Exercise 3.9. Prove Lemma 3.8 in general, by con-

sidering the double of the manifold M .

If (N, g) is a closed extension of (M, g), we continue

to write γx,v(t) for the geodesic in (N, g). One benefit of

working with a closed extension is that now γx,v(t) is well

defined and smooth for all t ∈ R.

Lemma 3.10 (Boundary defining function). Let (M, g)

be a compact manifold with smooth boundary, and let (N, g)

be a closed extension. There is a function ρ ∈ C∞(N),

called a boundary defining function, so that ρ(x) = d(x, ∂M)

near ∂M in M , and

M = {x ∈ N : ρ ≥ 0},

∂M = {x ∈ N : ρ = 0},

N \M = {x ∈ N : ρ < 0}.

One has ∇ρ(x) = ν(x) for all x ∈ ∂M .

Exercise 3.11. Prove Lemma 3.10.

The following result shows that the second fundamen-

tal form of ∂M is given by the Riemannian Hessian of ρ,

defined in terms of the total covariant derivative ∇ by

Hess(ρ) = ∇2ρ = (∂xjxkρ− Γljk∂xlρ) dxj ⊗ dxk.
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Moreover, strict convexity of the boundary can indeed be

characterized by the behaviour of tangential geodesics.

Lemma 3.12 (Strictly convex boundary). If (M, g) is

a compact manifold with smooth boundary and ρ is as in

Lemma 3.10, then for any (x, v) ∈ ∂0SM one has

−Πx(v, v) = Hessx(ρ)(v, v) =
d2

dt2
ρ(γx,v(t))

∣∣∣
t=0
.

Thus ∂M is strictly convex iff any geodesic in N starting

from some point (x, v) ∈ ∂0SM satisfies d2

dt2
ρ(γx,v(t))

∣∣
t=0

<

0. In particular, any geodesic tangent to ∂M stays outside

M for small positive and negative times, and any maximal

M-geodesic going from ∂M into M stays in M int except

for its endpoints.

The proof will follow from the next lemma, which will

also be useful later.

Lemma 3.13. Let ρ be as in Lemma 3.10, and consider

the smooth function

h : SN × R→ R, h(x, v, t) = ρ(γx,v(t)).
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If (x, v) ∈ SN and if t0 is such that x0 := γx,v(t0) ∈ ∂M ,

then one has

h(x, v, t0) = 0,

∂h

∂t
(x, v, t0) = 〈ν(x0), γ̇x,v(t0)〉,

∂2h

∂t2
(x, v, t0) = 〈∇γ̇x,v(t0)∇ρ, γ̇x,v(t0)〉 = Hessx0(γ̇x,v(t0), γ̇x,v(t0)).

Proof. Write γ(t) = γx,v(t). Since ρ|∂M = 0 one has

h(x, v, t0) = 0. Moreover, using that ∇ρ|∂M = ν we com-

pute

∂h

∂t
(x, v, t0) = dρ|x0(γ̇(t0)) = 〈ν(x0), γ̇(t0)〉.

Finally, one has

∂2h

∂t2
(x, v, t0) =

d

dt
(dρ|γ(t)(γ̇(t)))

∣∣∣
t=t0

=
d

dt
〈∇ρ|γ(t), γ̇(t)〉

∣∣∣
t=t0

= 〈∇γ̇(t)∇ρ, γ̇(t)〉+ 〈∇ρ,∇γ̇(t)γ̇(t)〉|t=t0 .

The last term is zero since γ is a geodesic (i.e. ∇γ̇(t)γ̇(t) =

0). The definition of the total covariant derivative ∇ gives

that 〈∇γ̇(t)∇ρ, γ̇(t)〉|t=t0 = ∇2ρ(γ̇(t0), γ̇(t0)), which fin-

ishes the proof. �

Proof of Lemma 3.12. Let (x, v) ∈ ∂0SM and write

γ(t) = γx,v(t) and h(x, v, t) = ρ(γ(t)). By Lemma 3.13 one
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has

h(x, v, 0) = 0,

∂h

∂t
(x, v, 0) = 0,

∂2h

∂t2
(x, v, 0) = 〈∇v∇ρ, v〉 = Hessx(v, v).

But ∇ρ|∂M = ν, which shows that 〈∇v∇ρ, v〉 = −Πx(v, v).

This proves the required formula.

Now ∂M is strictly convex ⇐⇒ Πx(v, v) > 0 for all

(x, v) ∈ ∂0SM ⇐⇒ ∂2
t h(x, v, 0) < 0 for all (x, v) ∈ ∂0SM .

By the Taylor formula

ρ(γ(t)) = h(x, v, t) = −1

2
Πx(v, v)t2 +O(t3)

when |t| is small. This shows that for small positive and

negative times ρ(γ(t)) < 0, i.e. γx,v(t) is in N \M . �

3.2. Regularity of the exit time

We will now discuss in detail the regularity of the fun-

damental exit time function τ on a compact non-trapping

manifold (M, g) with strictly convex boundary. Note that

by definition τ |∂−SM = 0.

Example 3.14. Let M = D be the closed unit disk in

the plane, and let g = e be the Euclidean metric. Take
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x = (0,−1) and let vθ = (cos θ, sin θ). An easy geometric

argument shows that

τ(x, vθ) =

 2 sin θ, θ ∈ [0, π],

0, θ ∈ [−π, 0]

Thus τ is continuous on ∂SM but fails to be continuously

differentiable in tangential directions. However, the odd

extension with respect to (x, v) 7→ (x,−v),

τ̃(x, vθ) :=

 2 sin θ, θ ∈ [0, π],

2 sin θ, θ ∈ [−π, 0]

is smooth.

Exercise 3.15. Verify the claims in Example 3.14.

We will now show that the properties of the exit time

function in Example 3.14 are valid in general.

Lemma 3.16. Let (M, g) be a compact non-trapping

manifold with strictly convex boundary. Then τ is contin-

uous on SM and smooth on SM \ ∂0SM .

Proof. The proof that τ is continuous is left as an

exercise. Let (N, g) be a closed extension of (M, g) and let

ρ be a boundary defining function as in Lemma 3.10. We
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define a function h : SN × R → R by setting h(x, v, t) :=

ρ(γx,v(t)). Then

∂h

∂t
(x, v, t) = dρ(γ̇x,v(t)) = 〈∇ρ(γx,v(t)), γ̇x,v(t))〉.

Assume that (x, v) ∈ SM\∂0SM , and set y := γx,v(τ(x, v)) ∈

∂M . Since y is the final point of the geodesic, one must

have γ̇x,v(τ(x, v)) ∈ ∂−SM (otherwise the geodesic could

be extended further). By strict convexity, one must also

have γ̇x,v(τ(x, v)) /∈ ∂0SM (since otherwise τ(x, v) = 0

and (x, v) would be in ∂0SM).

Thus γ̇x,v(τ(x, v)) ∈ ∂SM\∂+SM , i.e. 〈γ̇x,v(τ(x, v)), ν〉 <

0. Since ∇ρ agrees with ν on ∂M , we see that

∂h

∂t

∣∣∣∣
t=τ(x,v)

< 0.

Since h(x, v, τ(x, v)) = 0 and h is smooth, the implicit

function theorem ensures that τ is smooth in SM \∂0SM .

�

The set ∂0SM where τ is not smooth is often called

the glancing region.

Exercise 3.17. Show that τ is continuous in SM .

Exercise 3.18. Show that τ is indeed not smooth at

the glancing region ∂0SM .
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The next result shows that the odd extension of τ |∂SM
is smooth.

Lemma 3.19. Let (M, g) be a non-trapping manifold

with strictly convex boundary and let

τ̃(x, v) :=

 τ(x, v), (x, v) ∈ ∂+SM,

−τ(x,−v), (x, v) ∈ ∂−SM.

Then τ̃ ∈ C∞(∂SM); in particular τ : ∂+SM → R is

smooth.

Proof. As before we let h(x, v, t) := ρ(γx,v(t)) for

(x, v) ∈ ∂SM and t ∈ R. Note that by Lemma 3.13

• h(x, v, 0) = 0;

• ∂
∂t

∣∣
t=0

h(x, v, t) = 〈ν(x), v〉;

• ∂2

∂t2

∣∣∣
t=0

h(x, v, t) = Hessxρ(v, v).

Hence for some smooth function R(x, v, t) we can write

h(x, v, t) = 〈ν(x), v〉t+
1

2
Hessxρ(v, v)t2 +R(x, v, t)t3.

Since h(x, v, τ̃(x, v)) = 0, it follows that

(3.2) 〈ν(x), v〉+
1

2
Hessxρ(v, v)τ̃ +R(x, v, τ̃)τ̃ 2 = 0.

Here we used that τ̃(x, v) = 0 iff (x, v) ∈ ∂0SM . Hence if

we let

F (x, v, t) := 〈ν(x), v〉+
1

2
Hessxρ(v, v)t+R(x, v, t)t2
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we see that F is smooth, F (x, v, τ̃(x, v)) = 0 and

∂

∂t

∣∣∣∣
t=0

F (x, v, t) =
1

2
Hessxρ(v, v).

But for (x, v) ∈ ∂0SM , Hessxρ(v, v) = −Πx(v, v) < 0 and

thus by the implicit function theorem, τ̃ is smooth in a

neighbourhood of ∂0SM . Since τ̃ is smooth in ∂SM \

∂0SM the lemma follows. �

Remark 3.20. Note that we can define τ̃ on all SM by

setting τ̃(x, v) := τ(x, v)−τ(x,−v). The restriction of this

function to ∂SM coincides with the definition of τ̃ given

by Lemma 3.19. It turns out that in fact τ̃ ∈ C∞(SM);

see Lemma 3.24 below.

Define

µ(x, v) := 〈ν(x), v〉, (x, v) ∈ ∂SM.

This expression appears in Santaló’s formula, which is an

important change of variables formula on SM . We record

the following result for later purposes.

Lemma 3.21. Let (M, g) be a compact non-trapping

manifold with strictly convex boundary. The function µ/τ̃

extends to a smooth positive function on ∂SM whose value
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at (x, v) ∈ ∂0SM is
Πx(v, v)

2
.

Proof. Using (3.2) we can write

µ(x, v) = −1

2
Hessxρ(v, v)τ̃ −R(x, v, τ̃)τ̃ 2

and hence for (x, v) ∈ ∂SM \ ∂0SM near ∂0SM we can

write

µ/τ̃ = −1

2
Hessxρ(v, v)−R(x, v, τ̃)τ̃ .

But the right hand side of the last equation is a smooth

function near ∂0SM since R and τ̃ are; its value at (x, v) ∈

∂0SM is Πx(v, v)/2. Finally, observe that µ and τ̃ are both

positive for (x, v) ∈ ∂+SM \ ∂0SM and both negative for

(x, v) ∈ ∂−SM \ ∂0SM . �

Even more precise regularity properties of the exit time

function τ near ∂0SM can be obtained from the next

lemma. This will be the main tool when studying reg-

ularity properties of solutions to transport equations. The

proof is motivated by the theory of Whitney folds [Hör85,

Appendix C.4].

Lemma 3.22. Let (M, g) be compact with smooth bound-

ary, let (x0, v0) ∈ ∂0SM , and let ∂M be strictly convex
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near x0. Assume that M is embedded in a compact mani-

fold N without boundary. Then, near (x0, v0) in SM , one

has

τ(x, v) = Q(
√
a(x, v), x, v),

−τ(x,−v) = Q(−
√
a(x, v), x, v),

where Q is a smooth function near (0, x0, v0) in R × SN ,

a is a smooth function near (x0, v0) in SN , and a ≥ 0 in

SM .

Proof. This follows directly by applying Lemma 3.23

below to h(t, x, v) = ρ(γx,v(t)) near (0, x0, v0), where ρ is

a boundary defining function for M . �

Lemma 3.23. Let h(t, y) be smooth near (0, y0) in R×

RN . If

h(0, y0) = 0, ∂th(0, y0) = 0, ∂2
t h(0, y0) < 0,

then one has

h(t, y) = 0 near (0, y0) when h(0, y) ≥ 0 ⇐⇒ t = Q(±
√
a(y), y)

where Q is a smooth function near (0, y0) in R × RN , a

is a smooth function near y0 in RN , and a(y) ≥ 0 when

h(0, y) ≥ 0. Moreover, Q(
√
a(y), y) ≥ Q(−

√
a(y), y)

when h(0, y) ≥ 0.
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Proof. We use the same argument as in [Hör85, The-

orem C.4.2]. Using that ∂2
t h(0, y0) < 0, the implicit func-

tion theorem gives that

∂th(t, y) = 0 near (0, y0) ⇐⇒ t = g(y)

where g is smooth near y0 and g(y0) = 0. Write

h1(s, y) := h(s+ g(y), y).

Then ∂sh1(0, y) = 0 and ∂2
sh1(0, y0) < 0. Thus by the

Taylor formula we have

h1(s, y) = h1(0, y)− s2F (s, y)

where F is smooth near (0, y0) and F (0, y0) > 0. We define

r(s, y) := sF (s, y)1/2

and note that r(0, y0) = 0, ∂sr(0, y0) > 0. Thus the map

(s, y) 7→ (r(s, y), y) is a local diffeomorphism near (0, y0),

and there is a smooth function S near (0, y0) so that

r(s, y) = r̄ ⇐⇒ s = S(r̄, y).

Moreover, ∂rS(0, y0) > 0. Define the function

h2(r, y) := h1(0, y)− r2.
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Now

h(t, y) = h1(t− g(y), y) = h1(0, y)− (t− g(y))2F (t− g(y), y)

= h2(r(t− g(y), y), y).

Thus h(t, y) = 0 is equivalent with

(3.3) r(t− g(y), y)2 = h1(0, y) = h(g(y), y).

We claim that

(3.4) h(g(y), y) ≥ 0 near y0 when h(0, y) ≥ 0.

If (3.4) holds, then we may solve (3.3) to obtain

h(t, y) = 0 near (0, y0) when h(0, y) ≥ 0 ⇐⇒ r(t−g(y), y) = ±
√
h(g(y), y).

The last condition is equivalent with

t− g(y) = S(±
√
h(g(y), y), y).

This proves the lemma upon taking Q(r, y) = g(y)+S(r, y)

and a(y) = h(g(y), y) (note that r 7→ Q(r, y) is increasing

since ∂rS(0, y0) > 0). To prove (3.4), we use the Taylor

formula

h(g(y) + s, y) = h(g(y), y) + ∂th(g(y), y)s+G(s, y)s2
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where G(0, y0) < 0. Choosing s = −g(y) and using that

∂th(g(y), y) = 0 shows that h(g(y), y) ≥ h(0, y) near y =

y0, and thus (3.4) indeed holds. �

Lemma 3.24. Let (M, g) be a non-trapping manifold

with strictly convex boundary. Then the functions

τ̃(x, v) := τ(x, v)−τ(x,−v), and T (x, v) := τ(x, v)τ(x−v)

are smooth in SM .

Proof. Given the properties of τ we just have to prove

smoothness near a glancing point (x0, v0) ∈ ∂0SM . By

Lemma 3.22 given (x, v) ∈ SM near (x0, v0) ∈ ∂0SM we

have:

τ̃(x, v) = Q(
√
a(x, v), x, v) +Q(−

√
a(x, v), x, v).

Since we can write H(r2, x, v) = Q(r, x, v) + Q(−r, x, v),

where H is smooth near (0, x0, v0), we deduce that

τ̃(x, v) = H(a(x, v), x, v)

thus showing smoothness of τ̃ . The statement for T follows

by taking products, rather than sums. �

Remark 3.25. Using this lemma, it is possible to write

the functions Q and a from Lemma 3.22 in terms of τ̃ and
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T . Indeed, since τ satisfies the quadratic equation

τ(τ − τ̃) = T

we have

τ =
τ̃ +
√
τ̃ 2 + 4T

2

with τ̃ , T ∈ C∞(SM). Thus Q(t, x, v) = (τ̃(x, v) + t)/2

and a = τ̃ 2 + 4T .

3.3. The geodesic flow and the scattering relation

Let (M, g) be a compact, connected and oriented Rie-

mannian manifold with boundary ∂M and dimension n ≥

2. By Lemma 3.8 we may assume that (M, g) is isometri-

cally embedded into a closed manifold (N, g) of the same

dimension.

The geodesics of (N, g) are defined for all times in R.

We pack them into what is called the geodesic flow. For

each t ∈ R this is a diffeomorphism

ϕt : SN → SN

defined by

ϕt(x, v) := (γx,v(t), γ̇x,v(t)).

This is a flow, i.e. ϕt+s = ϕt ◦ϕs for all s, t ∈ R. The flow

has an infinitesimal generator called the geodesic vector


