
CHAPTER 2

Radial sound speeds

In this chapter we will discuss geometric inverse problems in a disk with radial
sound speed. The fact that the sound speed is radial is a strong symmetry condition,
which allows one to determine the behaviour of geodesics and solve related inverse
problems quite explicitly.

We first discuss geodesics of a radial sound speed satisfying the important
Herglotz condition, using the Hamiltonian approach to geodesics and Cartesian
coordinates. We then prove the classical result of [Her07, WZ07] that travel
times uniquely determine a radial sound speed of this type. Next we switch to
polar coordinates and study geodesics of a radially symmetric metric, and prove
that the geodesic X-ray transform is injective. The main point is that the geodesic
equations can be integrated explicitly using quadrature, and a function can be
determined from its integrals over geodesics using suitable changes of coordinates
and inverting Abel type transforms. Finally, we give examples of manifolds (surfaces
of revolution) where the geodesic X-ray transform is injective or is not injective.

2.1. Geodesics of a radial sound speed

The fact that the geodesics of a radial sound speed can be explicitly determined
is related to the existence of multiple conserved quantities in the Hamiltonian ap-
proach to geodesics. We first recall this approach.

2.1.1. Geodesics as a Hamilton flow. Let M ⊂ Rn, let x be standard
Cartesian coordinates, and let g = (gjk(x))nj,k=1 be a Riemannian metric on M . A

curve x(t) = (x1(t), . . . , xn(t)) is a geodesic iff it satisfies the geodesic equations

(2.1) ẍl(t) + Γljk(x(t))ẋj(t)ẋk(t) = 0,

where Γljk are the Christoffel symbols given by

Γljk =
1

2
glm(∂jgkm + ∂kgjm − ∂mgjk).

We will assume that all geodesics have unit speed, i.e.

|ẋ(t)|g =
√
gjk(x(t))ẋj(t)ẋk(t) = 1.

In this section we will also use the Euclidean length of vectors x ∈ R2, written as

|x|e =
√
x2

1 + x2
2.

We recall that the geodesic equations are often derived via the Lagrangian
approach to classical mechanics (they arise as the Euler-Lagrange equations satisfied

by minimizers of the length functional L(x) =
∫ b
a
|ẋ(t)|g dt.) We will now switch to
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16 2. RADIAL SOUND SPEEDS

the Hamiltonian approach, which considers the position x(t) and momentum ξ(t),
where ξ(t) is the covector corresponding to ẋ(t), simultaneously.

Writing

ξj(t) := gjk(x(t))ẋk(t), f(x, ξ) :=
√
gjk(x)ξjξk,

a short computation shows that the geodesic equations (for unit speed geodesics)
are equivalent with the Hamilton equations

(2.2)

{
ẋ(t) = ∇ξf(x(t), ξ(t)),

ξ̇(t) = −∇xf(x(t), ξ(t)).

Here f(x, ξ) = |ξ|g (speed, or square root of kinetic energy) is called the Hamilton
function, and it is defined on the cotangent space

T ∗M = {(x, ξ) ; x ∈M, ξ ∈ Rn} = M × Rn ⊂ R2n.

The operators ∇x and ∇ξ are the standard (Euclidean) gradient operators with
respect to the x and ξ variables.

Exercise 2.1. Show that (2.1) is equivalent with (2.2).

Writing γ(t) = (x(t), ξ(t)) and using the Hamilton vector field Hf on T ∗M ,
defined by

Hf := ∇ξf · ∇x −∇xf · ∇ξ = (∇ξf,−∇xf)

we may write the Hamilton equations as

γ̇(t) = Hf (γ(t)).

Definition 2.2. A function u = u(x, ξ) is a conserved quantity if it is constant
along the Hamilton flow, i.e. t 7→ u(x(t), ξ(t)) is constant for any curve (x(t), ξ(t))
solving (2.2).

Now (2.2) implies that

u is conserved

⇐⇒ d

dt
u(x(t), ξ(t)) = 0

⇐⇒ Hfu(x(t), ξ(t)) = 0.

Since
Hff = (∇ξf,−∇xf) · (∇xf,∇ξf) = 0,

the Hamilton function f (speed) is always conserved.
Let now M ⊂ R2, and consider a metric of the form

gjk(x) = c(x)−2δjk

where c ∈ C∞(M) is positive. Then f(x, ξ) = c(x)|ξ|e and, writing ξ̂ = ξ
|ξ|e ,

Hf = c(x)ξ̂ · ∇x − |ξ|e∇xc(x) · ∇ξ.
Define the angular momentum

L(x, ξ) = ξ · x⊥, x⊥ = (−x2, x1).

When is L conserved? We compute

HfL = c(x)ξ̂ · (−ξ⊥)− |ξ|e∇xc(x) · x⊥ = −|ξ|e∇xc(x) · x⊥.
Thus HfL = 0 iff ∇c(x) · x⊥ = 0, which is equivalent with the fact that c is radial:
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Lemma 2.3. The angular momentum L is conserved iff

c = c(r), r = |x|e.

If M ⊂ R2 and c(x) is radial, then the Hamilton flow on T ∗M (a four-
dimensional manifold) has two independent conserved quantities (the speed f and
angular momentum L). One says that the flow is completely integrable, which im-
plies that the geodesic equations can be solved quite explicitly by quadrature using
f and L. See e.g. [Tay11, Chapter 1] for more details on these facts.

2.1.2. Geodesics of a radial sound speed. We will now begin to analyze
geodesics in this setting. Let M = D \ {0} where D is the unit disk in R2. Assume
that

gjk(x) = c(r)−2δjk, r = |x|e,
where c ∈ C∞([0, 1]). Note that the origin is a special point and gjk(x) is not
necessarily smooth there, hence we will consider geodesics only away from the
origin.

We write

r(t) = |x(t)|e, x̂ =
x

|x|e
.

Then f(x, ξ) = c(r)|ξ|e and the Hamilton equations (2.2) become

(2.3)

{
ẋ(t) = c(r(t))ξ̂(t),

ξ̇(t) = −|ξ(t)|ec′(r(t))x̂(t).

Consider geodesics starting on ∂D, i.e. r(0) = 1, and write

(2.4) ξ(0) =
1

c(1)
(−
√

1− p2x(0) + px(0)⊥), 0 < p < 1.

Note that ξ(0) points inward, and hence also ẋ(0) = c(1)2ξ(0) points inward. The
normalization yields |ẋ(0)|g = |ξ(0)|g = 1, so that the geodesic has unit speed.

We wish to study how deep the geodesic goes into M , which boils down to
understanding r(t). Computing the derivative of r(t) gives

(2.5) ṙ =
x · ẋ
|x|e

=
c(r)

r|ξ|e
(x · ξ).

In particular, we see that ṙ(t) has the same sign as x(t) · ξ(t). The latter quantity
can be analyzed by (2.3). We compute

d

dt
(x · ξ) = ẋ · ξ + x · ξ̇ = |ξ|e(c− rc′(r))

= c2|ξ|e
d

dr

(
r

c(r)

) ∣∣∣
r=r(t)

.(2.6)

Next we make use of the conserved quantities:

f conserved =⇒ c(r(t))|ξ(t)|e = 1 =⇒ |ξ(t)|e =
1

c(r(t))
,(2.7)

L conserved =⇒ ξ(t) · x(t)⊥ = ξ(0) · x(0)⊥.(2.8)

Then (2.6) becomes

(2.9)
d

dt
(x · ξ) = c(r)

d

dr

(
r

c(r)

) ∣∣∣
r=r(t)

.
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Remark 2.4. We note that one can derive a useful ODE for r(t). By (2.5)

one has ṙ = c(x̂ · ξ̂). Decompose ξ̂ = (ξ̂ · x̂)x̂ + (ξ̂ · x̂⊥)x̂⊥. Noting that |x̂ · ξ̂| =√
1− (ξ̂ · x̂⊥)2 =

√
1−

(
pc(r)
rc(1)

)2

by (2.7), (2.8) and (2.4), we see that r(t) solves

the equation

(2.10) ṙ = ±c(r)

√
1−

(
pc(r)

rc(1)

)2

, ±ξ · x̂ ≥ 0.

This is an autonomous ODE for r(t) (all other dependence on t has been eliminated).

To simplify the behaviour of geodesics we would like that ṙ(t) has a unique
zero at some t = tp, is negative for t < tp, and positive for t > tp. This means that
geodesics curve back toward the boundary after they reach their deepest point.
Since ṙ(t) has the same sign as x(t) · ξ(t), the identity (2.9) shows that this is
guaranteed by the following important condition.

Definition 2.5. We say that a radial sound speed c ∈ C∞([0, 1]) satisfies the
Herglotz condition if

(2.11)
d

dr

(
r

c(r)

)
> 0, r ∈ [0, 1].

Assuming this condition we can describe the behaviour of geodesics.

Theorem 2.6. Assume that c ∈ C∞([0, 1]) satisfies the Herglotz condition. Let
0 < p < 1, and consider the geodesic with x(0) ∈ ∂D and ξ(0) given by (2.4). There
is a unique time tp > 0 such that

ṙ(t) < 0 for 0 ≤ t < tp, ṙ(tp) = 0, ṙ(t) > 0 for tp < t ≤ 2tp.

One has 0 < r(t) < 1 for 0 < t < 2tp and r(0) = r(2tp) = 1. Moreover, the geodesic
is symmetric with respect to t = tp so that x(tp + s) = Rp(x(tp − s)) where Rp is
reflection about x̂(tp).

Proof. By (2.4) one has

(2.12) x(0) · ξ(0) = −c(1)−1
√

1− p2 < 0,

and (2.5) implies that ṙ(0) < 0. Thus x(t) stays in D \ {0} at least for a short
time. Note also that by (2.7) (conservation of f) and the positivity of c, one has
|ξ(t)|e ≥ ε0 > 0 whenever the geodesic is defined.

Let T be the maximal time of existence of the geodesic x(t), i.e.

T = sup{t̄ > 0 ; x|[0,t̄) stays in D \ {0}}.

There are two ways that x(t) can exit D \ {0}: either x(t) can go to 0, or x(t) can
go to ∂D. Let us show that the first case cannot happen. If x|[0,t̄) stays in D \ {0}
and x(tj) → 0 as tj → t̄, then (2.8) implies that ξ(0) · x(0)⊥ = 0. But (2.4) gives
that ξ(0) · x(0)⊥ = p/c(1), which is impossible since we assumed that 0 < p < 1.
This shows that either T =∞, or T is finite and x(T ) ∈ ∂D.

Now we go back to (2.9) and note that the positivity of c and the Herglotz
condition (2.11) imply that

d

dt
(x(t) · ξ(t)) ≥ ε0 > 0, t ∈ [0, T ).
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Thus x(t) · ξ(t) is strictly increasing. By (2.12) one has x(0) · ξ(0) < 0 and

(2.13) x(t) · ξ(t) ≥ x(0) · ξ(0) + ε0t, t ∈ [0, T ).

Now if x(t) · ξ(t) were negative for t ∈ [0, T ), then by (2.5) r(t) would be strictly
decreasing for t ∈ [0, T ), and the maximal time would be T = ∞ since x(t) could
not go to ∂D. This is a contradiction with (2.13), hence there must be a unique
tp > 0 with x(tp) · ξ(tp) = 0. By (2.5) one has ṙ(t) < 0 for t < tp, ṙ(tp) = 0, and
also ṙ(t) > 0 for t > tp since x(t) · ξ(t) is strictly increasing.

The other claims follow if we can show the symmetry x(tp+s) = Rp(x(tp−s)).
Since everything is rotationally symmetric, we may assume that x̂(tp) = (1, 0) and
Rp(x1, x2) = (x1,−x2). Define η(s) = (x(tp + s), ξ(tp + s)) and ζ(s) = (Rp(x(tp −
s)),−Rp(ξ(tp− s))). Then both η(s) and ζ(s) satisfy the Hamilton equations (2.3)
with the same initial data when s = 0 (since x(tp) · ξ(tp) = 0), and the symmetry
condition follows by uniqueness for ODEs. �

2.2. Travel time tomography

We will now consider a variant of the travel time tomography problem discussed
in the introduction, and prove the classical result of [Her07, WZ07] showing
that travel times uniquely determine a radial sound speed satisfying the Herglotz
condition.

If c ∈ C∞([0, 1]) satisfies the Herglotz condition, then by Theorem 2.6 the unit

speed geodesic starting at x(0) ∈ ∂D having codirection ξ(0) = − 1
c(1) (

√
1− p2x(0)+

px(0)⊥) where 0 < p < 1 returns to ∂D after time 2tp. Note that the travel time
2tp does not depend on the choice of x(0) ∈ ∂D because of radial symmetry. Thus
we may define the travel time function

Tc(p) = 2tp, 0 < p < 1.

Theorem 2.7 (Travel time tomography). Assume that c ∈ C∞([0, 1]) is posi-
tive and satisfies the Herglotz condition. From the knowledge of the value c(1) and
the travel times

Tc(p), 0 < p < 1,

one can determine c(r) for r ∈ (0, 1].

To prove this theorem, we start with the ODE (2.10) which gives that

dr

dt
= c(r)

√
1−

(
pc(r)

rc(1)

)2

, tp ≤ t ≤ 2tp.

We use this fact and a change of variables to obtain

(2.14) Tc(p) = 2tp = 2

∫ 2tp

tp

dt = 2

∫ 1

rp

1

c(r)

√
1−

(
pc(r)
rc(1)

)2
dr

where rp = r(tp). Thus, from the measurements Tc(p) with 0 < p < 1 we know the
integrals (2.14) involving c(r). We wish to recover c(r) from these integrals.

To simplify (2.14), we make the change of variables

(2.15) u =

(
c(1)r

c(r)

)2

.
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This is a valid change of variables by the Herglotz condition (2.11). Note that since
ṙ(tp) = 0, the ODE (2.10) shows that rp = r(tp) satisfies

rp
c(rp)

=
p

c(1)
.

Hence r = rp corresponds to u = p2. Then Tc(p) becomes

(2.16) Tc(p) =
2

c(1)

∫ 1

p2

dr

du

u

r

1√
u− p2

du.

This is an Abel integral, of the kind encountered by Abel [Abe26] when determining
the profile of a hill by measuring the time it takes for a particle with different initial
positions to roll down the hill. This work of Abel is considered to be the first
appearance of an integral equation in mathematics.

These Abel integrals can be inverted by the following result, where we also pay
attention to various mapping properties of the Abel transform. See [GV91] for a
detailed treatment of Abel integral equations.

Theorem 2.8 (Abel transform). Let α < β, and define the Abel transform

Au(x) :=

∫ β

x

1

(y − x)1/2
u(y) dy, α < x ≤ β.

The Abel transform takes L1
loc((α, β]) to itself. Define the space

A((α, β]) := {f ∈ L1
loc((α, β]) ; Af ∈W 1,1

loc ((α, β])}.
The Abel transform is a bijective map between the following spaces:

A : L1
loc((α, β])→ A((α, β]),(2.17)

A : A((α, β])→ {f ∈W 1,1
loc ((α, β]) ; f(β) = 0},(2.18)

A : C∞((α, β])→ {(β − x)1/2h(x) ; h ∈ C∞((α, β])}.(2.19)

Given any f ∈ A((α, β]), the equation Au = f has a unique solution u ∈ L1
loc((α, β])

given by the formula

(2.20) u(y) = − 1

π

d

dy

∫ β

y

f(x)

(x− y)1/2
dx.

If additionally f ∈W 1,1
loc ((α, β]) with f(β) = 0, one has the alternative formula

(2.21) u(y) = − 1

π

∫ β

y

f ′(x)

(x− y)1/2
dx.

Remark 2.9. Here L1
loc((α, β]) = {u ; u|[γ,β] ∈ L1([γ, β]) whenever α < γ < β},

and similarly for W 1,1
loc ((α, β]). Recall that in one dimension W 1,1 coincides with

the space of absolutely continuous functions, and hence functions in W 1,1
loc ((α, β])

can be evaluated pointwise at β.

Proof. If α < γ < β, we may use Fubini’s theorem to show that∫ β

γ

|Au(x)| dx ≤
∫ β

γ

∫ β

x

|u(y)|
(y − x)1/2

dy dx =

∫ β

γ

∫ y

γ

|u(y)|
(y − x)1/2

dx dy

= 2

∫ β

γ

(y − γ)1/2|u(y)| dy ≤ 2(β − γ)1/2

∫ β

γ

|u(y)| dy.
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This shows that A maps L1
loc((α, β]) to itself. We use the definition of A and

Fubini’s theorem to compute

A2u(z) =

∫ β

z

Au(x)

(x− z)1/2
dx =

∫ β

z

∫ β

x

u(y)

(x− z)1/2(y − x)1/2
dy dx

=

∫ β

z

∫ y

z

u(y)

(x− z)1/2(y − x)1/2
dx dy.

The last quantity may be written as
∫ β
z
k(z, y)u(y) dy where, using the change of

variables x = z + (y − z)w,

k(z, y) =

∫ y

z

1

(x− z)1/2(y − x)1/2
dx =

∫ 1

0

1

w1/2(1− w)1/2
dw.

Thus k(z, y) is a constant, given by the beta function B( 1
2 ,

1
2 ) = π. The constant

can be computed directly as follows: changing variables w = 1
2 + 1

2v and v = sin θ
gives ∫ 1

0

1

w1/2(1− w)1/2
dw =

∫ 1

−1

1√
1− v2

dv =

∫ π/2

−π/2
dθ = π.

This shows that for any u ∈ L1
loc((α, β]) one has

(2.22) A2u(z) = π

∫ β

z

u(y) dy.

Thus (A(Au))′(z) = −πu(z), so A maps L1
loc((α, β]) into A((α, β]).

We next show that the map (2.17) is bijective. By (2.22), if Au = 0 it follows
that u ≡ 0, so A is injective. Now let f ∈ A((α, β]). Setting u := − 1

π
d
dxAf we have

u ∈ L1
loc((α, β]) and

π

∫ β

z

u(y) dy = Af(z)

since one always has Af(β) = 0. Combining this with (2.22) we get Af = A(Au),
and since A is injective we have Au = f . We have proved that (2.17) is bijective
and that one has the inversion formula (2.20).

Next let f ∈W 1,1
loc ((α, β]) with f(β) = 0, and integrate by parts to obtain

Af(x) =

∫ β

x

f(y)
d

dy
(2(y − x)1/2) dy

= −2

∫ β

x

(y − x)1/2f ′(y) dy.

It follows that Af ∈ L1
loc((α, β]) and

(Af)′(x) =

∫ β

x

f ′(y)

(y − x)1/2
dy = A(f ′)(x).

By (2.20) the function u := − 1
π (Af)′ satisfies Au = f . But now one also has

u = − 1
πA(f ′), which proves the second inversion formula (2.21). The fact that

(2.18) is a bijective map follows immediately.
Finally, if u ∈ C∞((α, β]) we change variables y = x+ (β − x)s and obtain

Au(x) =

∫ β

x

u(y)

(y − x)1/2
dy = (β − x)1/2

∫ 1

0

u(x+ (β − x)s)

s1/2
ds.
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Since u is smooth, one has Au(x) = (β − x)1/2h(x) where h ∈ C∞((α, β]). Con-
versely, if f(x) = (β − x)1/2h(x) where h ∈ C∞((α, β]), the change of variables
x = y + (β − y)s gives∫ β

y

f(x)

(x− y)1/2
dx = (β − y)

∫ 1

0

(1− s)1/2h(y + (β − y)s)

s1/2
ds.

If u is defined by (2.20), we see that u ∈ C∞((α, β]) and u solves Au = f . Thus
(2.19) is a bijective map. �

We now return to (2.16). Since the value c(1) is known, using (2.16) and
Theorem 2.8 we can determine the function f(u) := dr

du
u
r(u) from the knowledge of

Tc(p) for 0 < p < 1 . We rewrite this as d
du log r(u) = f(u)

u , which shows that we
can recover the function

r(u) = exp

(
−
∫ 1

u

f(v)

v
dv

)
.

By taking the inverse function, we can determine u(r). By (2.15), we have de-

termined the function c(r) = c(1)r/
√
u(r). This completes the proof of Theorem

2.7.

Remark 2.10. If we assume that the sound speed extends smoothly to M := D,
then Theorem 2.7 can be reformulated using the notation of Chapter 3 as follows: if
g1 and g2 are two Riemannian metrics on M corresponding to radial sound speeds
satisfying the Herglotz condition, if g1|∂M = g2|∂M and if τg1 |∂+SM = τg2 |∂+SM
(the travel times of maximal geodesics for g1 and g2 agree), then g1 = g2.

In the boundary rigidity problem, one considers measurements given by the
boundary distance function dg|∂M×∂M instead of the travel time function τg. It
follows from equation (11.1) that if dg1 |∂M×∂M = dg2 |∂M×∂M and the boundary is
strictly convex, then g1|∂M = g2|∂M . Moreover, if the manifolds are simple then
by Proposition 11.7 one has τg1 |∂+SM = τg2 |∂+SM . Thus in the setting of simple
metrics, Theorem 2.7 also solves the boundary rigidity problem for radial sound
speeds.

Remark 2.11. Theorem 2.7 assumes that c(1), i.e. g|∂M , is known. Often one
can determine g|∂M by looking at short geodesics. However, in the present setting
one gets something slightly different. In (2.16), write f(u) = dr

du
u
r(u) and note that

f is smooth in [p2, 1]. The change of variables u = p2 + (1− p2)s yields∫ 1

p2

f(u)√
u− p2

du = (1− p2)1/2

∫ 1

0

f(p2 + (1− p2)s)

s1/2
ds.

Thus we obtain

lim
p→1

Tc(p)√
1− p2

=
4f(1)

c(1)
.

From (2.15) we see that du
dr = c(1)2

(
2r
c(r)2 −

2r2c′(r)
c(r)3

)
. This implies that f(1) =

dr
du (1) = (2 − 2c′(1)

c(1) )−1 = c(1)
2(c(1)−c′(1)) . Hence, by looking at travel times of short

geodesics one recovers the quantity c(1)− c′(1) from Tc(p).


