CHAPTER 2

Radial sound speeds

In this chapter we will discuss geometric inverse prob-
lems in a disk with radial sound speed. The fact that
the sound speed is radial is a strong symmetry condition,
which allows one to determine the behaviour of geodesics
and solve related inverse problems quite explicitly.

We first discuss geodesics of a radial sound speed sat-
isfying the important Herglotz condition, using the Hamil-
tonian approach to geodesics and Cartesian coordinates.
We then prove the classical result of [Her07, WZ07] that
travel times uniquely determine a radial sound speed of
this type. Next we switch to polar coordinates and study
geodesics of a radially symmetric metric, and prove that
the geodesic X-ray transform is injective. The main point
is that the geodesic equations can be integrated explicitly
using quadrature, and a function can be determined from
its integrals over geodesics using suitable changes of coor-

dinates and inverting Abel type transforms. Finally, we
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34 2. RADIAL SOUND SPEEDS

give examples of manifolds (surfaces of revolution) where

the geodesic X-ray transform is injective or is not injective.

2.1. Geodesics of a radial sound speed

The fact that the geodesics of a radial sound speed
can be explicitly determined is related to the existence of
multiple conserved quantities in the Hamiltonian approach

to geodesics. We first recall this approach.

2.1.1. Geodesics as a Hamilton flow. Let M C
R™, let z be standard Cartesian coordinates, and let g =
(9j1(x))% =, be a Riemannian metric on M. A curve
2(t) = (21(t),...,2"(t)) is a geodesic iff it satisfies the

geodesic equations
Q1) #0)+ Thla@) 0 (1) =0
where I’é— . are the Christoffel symbols given by

1
Ffjk = iglm(ajgkm + 8k:gjrn - amgjk)'

We will assume that all geodesics have unit speed, i.e.

2(t)]g = \/ij(x(t))ﬂbj(t)ab’“(t) =1.

In this section we will also use the Euclidean length of

vectors & € R?, written as
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We recall that the geodesic equations are often derived
via the Lagrangian approach to classical mechanics (they
arise as the Euler-Lagrange equations satisfied by minimiz-
ers of the length functional L(x) = f;|;'v(t)|g dt.) We will
now switch to the Hamiltonian approach, which considers
the position z(t) and momentum &(t), where £(¢) is the
covector corresponding to &(t), simultaneously.

Writing

&i(t) = gjr(a ()" (t), f(,8) := 1/ g7* (2)€;&k,

a short computation shows that the geodesic equations (for
unit speed geodesics) are equivalent with the Hamilton

equations
B(t) = Vef(z(t),8(1),

() = =V f(z(t), (1))
Here f(z,&) = |£|4 (speed, or square root of kinetic energy)

(2.2)

is called the Hamilton function, and it is defined on the
cotangent space T*M = {(z,§);z € M, { e R*"} = M x
R™.

EXERCISE 2.1. Show that (2.1) is equivalent with (2.2).

Writing () = («(¢),£(t)) and using the Hamilton vec-
tor field Hy on T M, defined by

Hf = ng'Vx—vxf'vf = (vﬁfa_vxf)
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we may write the Hamilton equations as

Y(t) = Hy((1)-

DEFINITION 2.2. A function u = u(z, §) is a conserved
quantity if it is constant along the Hamilton flow, i.e. ¢ —
u(x(t),£(t)) is constant for any curve (z(t),£(t)) solving
(2.2).

Now (2.2) implies that

u 1s conserved

d
(1), £(1) =0

Hyu(x(t),£(t)) = 0.

!

J

Since

Hif = (Vef, =Vaf) - (Vaf,Vef) =0,

the Hamilton function f (speed) is always conserved.

Let now M C R2, and consider a metric of the form
gj(x) = c(z) "2,

where ¢ € C*(M) is positive. Then f(z,&) = c(z)¢|e
£

and, writing {c =

Hy = C(:E)é Vi — €| Vac() - Ve.
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Define the angular momentum
L(z,&) =¢ -zt zt = (—x9,11).
When is L conserved? We compute
HyL = c(2)é- (=€) = [l Vac(a) -2t = —[g]cVac(w) - 2™

Thus H;L = 0 iff Ve(x) -2+ = 0, which is equivalent with
the fact that c is radial:

LEMMA 2.3. The angular momentum L is conserved
uf

c=c(r), r=|x|e.

If M C R? and c(z) is radial, then the Hamilton flow
on T*M (a four-dimensional manifold) has two indepen-
dent conserved quantities (the speed f and angular mo-
mentum L). One says that the flow is completely inte-
grable, which implies that the geodesic equations can be
solved quite explicitly by quadrature using f and L. See
e.g. [Tayl1, Chapter 1] for more details on these facts.

2.1.2. Geodesics of a radial sound speed. We
will now begin to analyze geodesics in this setting. Let

M =D\ {0} where D is the unit disk in R?. Assume that

gir(x) = c(r) 01, r= |z,
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where ¢ € C°([0,1]). Note that the origin is a special
point and g;x(z) is not necessarily smooth there, hence we
will consider geodesics only away from the origin.

We write

r(t) = e(®)le, &= ﬁ

Then f(x,£) = ¢(r)|€|e and the Hamilton equations (2.2)

become
(2.3)

Consider geodesics starting on 0D, i.e. r(0) = 1, and write
(2.4)
1

£(0) = @(—vl—p%(Upr(O)L), 0<p<L

Note that £(0) points inward, and hence also 4:(0) = ¢(1)2£(0)
points inward. The normalization yields |£(0)|, = |£(0)|, =
1, so that the geodesic has unit speed.

We wish to study how deep the geodesic goes into M,
which boils down to understanding r(¢). Computing the

derivative of r(t) gives

. w-d )
(25) P Tl T

(- &)

In particular, we see that 7(¢) has the same sign as z(t) -

&(t). The latter quantity can be analyzed by (2.3). We






