
CHAPTER 2

Radial sound speeds

In this chapter we will discuss geometric inverse prob-

lems in a disk with radial sound speed. The fact that

the sound speed is radial is a strong symmetry condition,

which allows one to determine the behaviour of geodesics

and solve related inverse problems quite explicitly.

We first discuss geodesics of a radial sound speed sat-

isfying the important Herglotz condition, using the Hamil-

tonian approach to geodesics and Cartesian coordinates.

We then prove the classical result of [Her07, WZ07] that

travel times uniquely determine a radial sound speed of

this type. Next we switch to polar coordinates and study

geodesics of a radially symmetric metric, and prove that

the geodesic X-ray transform is injective. The main point

is that the geodesic equations can be integrated explicitly

using quadrature, and a function can be determined from

its integrals over geodesics using suitable changes of coor-

dinates and inverting Abel type transforms. Finally, we
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34 2. RADIAL SOUND SPEEDS

give examples of manifolds (surfaces of revolution) where

the geodesic X-ray transform is injective or is not injective.

2.1. Geodesics of a radial sound speed

The fact that the geodesics of a radial sound speed

can be explicitly determined is related to the existence of

multiple conserved quantities in the Hamiltonian approach

to geodesics. We first recall this approach.

2.1.1. Geodesics as a Hamilton flow. Let M ⊂

Rn, let x be standard Cartesian coordinates, and let g =

(gjk(x))nj,k=1 be a Riemannian metric on M . A curve

x(t) = (x1(t), . . . , xn(t)) is a geodesic iff it satisfies the

geodesic equations

(2.1) ẍl(t) + Γljk(x(t))ẋj(t)ẋk(t) = 0,

where Γljk are the Christoffel symbols given by

Γljk =
1

2
glm(∂jgkm + ∂kgjm − ∂mgjk).

We will assume that all geodesics have unit speed, i.e.

|ẋ(t)|g =
√
gjk(x(t))ẋj(t)ẋk(t) = 1.

In this section we will also use the Euclidean length of

vectors x ∈ R2, written as

|x|e =
√
x2

1 + x2
2.
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We recall that the geodesic equations are often derived

via the Lagrangian approach to classical mechanics (they

arise as the Euler-Lagrange equations satisfied by minimiz-

ers of the length functional L(x) =
∫ b
a
|ẋ(t)|g dt.) We will

now switch to the Hamiltonian approach, which considers

the position x(t) and momentum ξ(t), where ξ(t) is the

covector corresponding to ẋ(t), simultaneously.

Writing

ξj(t) := gjk(x(t))ẋk(t), f(x, ξ) :=
√
gjk(x)ξjξk,

a short computation shows that the geodesic equations (for

unit speed geodesics) are equivalent with the Hamilton

equations

(2.2)

 ẋ(t) = ∇ξf(x(t), ξ(t)),

ξ̇(t) = −∇xf(x(t), ξ(t)).

Here f(x, ξ) = |ξ|g (speed, or square root of kinetic energy)

is called the Hamilton function, and it is defined on the

cotangent space T ∗M = {(x, ξ) ; x ∈ M, ξ ∈ Rn} = M ×

Rn.

Exercise 2.1. Show that (2.1) is equivalent with (2.2).

Writing γ(t) = (x(t), ξ(t)) and using the Hamilton vec-

tor field Hf on T ∗M , defined by

Hf := ∇ξf · ∇x −∇xf · ∇ξ = (∇ξf,−∇xf)
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we may write the Hamilton equations as

γ̇(t) = Hf (γ(t)).

Definition 2.2. A function u = u(x, ξ) is a conserved

quantity if it is constant along the Hamilton flow, i.e. t 7→

u(x(t), ξ(t)) is constant for any curve (x(t), ξ(t)) solving

(2.2).

Now (2.2) implies that

u is conserved

⇐⇒ d

dt
u(x(t), ξ(t)) = 0

⇐⇒ Hfu(x(t), ξ(t)) = 0.

Since

Hff = (∇ξf,−∇xf) · (∇xf,∇ξf) = 0,

the Hamilton function f (speed) is always conserved.

Let now M ⊂ R2, and consider a metric of the form

gjk(x) = c(x)−2δjk

where c ∈ C∞(M) is positive. Then f(x, ξ) = c(x)|ξ|e
and, writing ξ̂ = ξ

|ξ|e ,

Hf = c(x)ξ̂ · ∇x − |ξ|e∇xc(x) · ∇ξ.
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Define the angular momentum

L(x, ξ) = ξ · x⊥, x⊥ = (−x2, x1).

When is L conserved? We compute

HfL = c(x)ξ̂ · (−ξ⊥)− |ξ|e∇xc(x) ·x⊥ = −|ξ|e∇xc(x) ·x⊥.

Thus HfL = 0 iff ∇c(x) · x⊥ = 0, which is equivalent with

the fact that c is radial:

Lemma 2.3. The angular momentum L is conserved

iff

c = c(r), r = |x|e.

If M ⊂ R2 and c(x) is radial, then the Hamilton flow

on T ∗M (a four-dimensional manifold) has two indepen-

dent conserved quantities (the speed f and angular mo-

mentum L). One says that the flow is completely inte-

grable, which implies that the geodesic equations can be

solved quite explicitly by quadrature using f and L. See

e.g. [Tay11, Chapter 1] for more details on these facts.

2.1.2. Geodesics of a radial sound speed. We

will now begin to analyze geodesics in this setting. Let

M = D \ {0} where D is the unit disk in R2. Assume that

gjk(x) = c(r)−2δjk, r = |x|e,
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where c ∈ C∞([0, 1]). Note that the origin is a special

point and gjk(x) is not necessarily smooth there, hence we

will consider geodesics only away from the origin.

We write

r(t) = |x(t)|e, x̂ =
x

|x|e
.

Then f(x, ξ) = c(r)|ξ|e and the Hamilton equations (2.2)

become

(2.3)

 ẋ(t) = c(r(t))ξ̂(t),

ξ̇(t) = −|ξ(t)|ec′(r(t))x̂(t).

Consider geodesics starting on ∂D, i.e. r(0) = 1, and write

(2.4)

ξ(0) =
1

c(1)
(−
√

1− p2x(0) + px(0)⊥), 0 < p < 1.

Note that ξ(0) points inward, and hence also ẋ(0) = c(1)2ξ(0)

points inward. The normalization yields |ẋ(0)|g = |ξ(0)|g =

1, so that the geodesic has unit speed.

We wish to study how deep the geodesic goes into M ,

which boils down to understanding r(t). Computing the

derivative of r(t) gives

(2.5) ṙ =
x · ẋ
|x|e

=
c(r)

r|ξ|e
(x · ξ).

In particular, we see that ṙ(t) has the same sign as x(t) ·

ξ(t). The latter quantity can be analyzed by (2.3). We




