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2.3. Geodesics of a radially symmetric metric

For the rest of this chapter, it will be convenient to switch from Cartesian
coordinates (x1, x2) to polar coordinates (r, θ), where x = (r cos θ, r sin θ). Recall
that the Euclidean metric g = dx2

1 + dx2
2 looks like g = dr2 + r2 dθ2 in polar

coordinates. Hence the metric g = c(r)−2(dx2
1 + dx2

2) with radial sound speed c(r)
becomes

(2.23) g = c(r)−2 dr2 + (r/c(r))2 dθ2.

We will work in the region M = {(r, θ) ; r0 < r ≤ r1} where r0 < r1 (note that
r0 is not necessarily required to be positive), and consider metrics of the form

(2.24) g = a(r)2 dr2 + b(r)2 dθ2

where a, b ∈ C∞([r0, r1]) are positive. Clearly this includes metrics (2.23) with
radial sound speed, with a(r) = 1/c(r) and b(r) = r/c(r). However, the two forms
turn out to be equivalent:

Exercise 2.12. Show that a metric of the form (2.24) can be put in the form
(2.23) by a change of variables.

Working with the form (2.24) will be useful in view of the following example.

Example 2.13 (Surfaces of revolution). Let r correspond to the z-coordinate
in R3, and let h : [r0, r1]→ R be a smooth positive function. Let S be the surface
of revolution obtained by rotating the graph of r 7→ h(r) about the z-axis. The
surface S is given by S = {q(r, θ) ; r ∈ (r0, r1], θ ∈ [0, 2π]} where

q(r, θ) = (h(r) cos θ, h(r) sin θ, r).

Then S has tangent vectors

∂r = (h′(r) cos θ, h′(r) sin θ, 1),

∂θ = (−h(r) sin θ, h(r) cos θ, 0).

Equip S with the metric g induced by the Euclidean metric in R3. Since ∂r · ∂r =
1 + h′(r)2, ∂r · ∂θ = 0 and ∂θ · ∂θ = h(r)2, one has

g = (1 + h′(r)2) dr2 + h(r)2 dθ2.

Thus surfaces of revolution have metrics of the form (2.24), where a(r) =
√

1 + h′(r)2

and b(r) = h(r).

The geodesic equations for the metric (2.24) can be determined by computing
the Christoffel symbols

Γljk =
1

2
glm(∂jgkm + ∂kgjm − ∂mgjk).

A direct computation shows that

Γ1
11 = ∂ra/a, Γ1

12 = Γ1
21 = 0, Γ1

22 = −b∂rb/a2,

Γ2
11 = 0, Γ2

12 = Γ2
21 = ∂rb/b, Γ2

22 = 0.

Thus the geodesic equations are

r̈ +
∂ra

a
(ṙ)2 − b∂rb

a2
(θ̇)2 = 0,(2.25)

θ̈ +
2∂rb

b
ṙθ̇ = 0.(2.26)
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The conserved quantities (speed and angular momentum) corresponding to (2.7)
and (2.8) are given as follows:

(a(r)ṙ)2 + (b(r)θ̇)2 is conserved,(2.27)

b(r)2θ̇ is conserved.(2.28)

In fact, the first quantity is conserved since geodesics have constant speed, and the
fact that the second quantity is conserved follows directly by taking its t-derivative
and using the second geodesic equation.

As in Theorem 2.6, we would like that when a geodesic reaches its deepest point
where ṙ = 0, it turns back toward the surface (i.e. r̈ > 0). Now the equation (2.25)
implies that

ṙ = 0 =⇒ r̈ =
b∂rb

a2
(θ̇)2.

Thus, when ṙ = 0, one has r̈ > 0 iff b′ > 0. This is the analogue of the Herglotz
condition. For a radial sound speed as in (2.23), one has b(r) = r/c(r) and the

condition b′ > 0 is equivalent with d
dr

(
r
c(r)

)
> 0.

Definition 2.14. A metric g = a(r)2 dr2 + b(r)2 dθ2, where a, b ∈ C∞([r0, r1])
are positive, satisfies the Herglotz condition if

b′(r) > 0, r ∈ [r0, r1].

The following result is the analogue of Theorem 2.6.

Theorem 2.15 (Geodesics). Let g satisfy the Herglotz condition as in Defini-
tion 2.14. Let (r(t), θ(t)) be a unit speed geodesic with r(0) = r1 and ṙ(0) < 0.
There are two types of geodesics: either r(t) strictly decreases to {r = r0} in finite
time, or the geodesic stays in M and goes back to {r = r1} in finite time. Geodesics
of the second type have a unique closest point (ρ, α) to the origin, and they consist
of two symmetric branches where first r(t) strictly decreases from r1 to ρ, and then
r(t) strictly increases from ρ to r1. Moreover, for any (ρ, α) ∈M there is a unique

such geodesic γρ,α(t) = (r(t), θ(t)) with θ̇(0) > 0, and it satisfies

ṙ = ∓ 1

a(r)b(r)

√
b(r)2 − b(ρ)2,(2.29)

θ(t) = α∓ b(ρ)

∫ r(t)

ρ

a(r)

b(r)

1√
b(r)2 − b(ρ)2

dr,(2.30)

where − corresponds to the first branch where r(t) decreases, and + corresponds to
the second branch where r(t) increases.

Proof. Since the geodesic has unit speed, (2.27) implies that

(2.31) (a(r)ṙ)2 + (b(r)θ̇)2 = 1.

Moreover, (2.28) implies that

(2.32) b(r)2θ̇ = p

for some constant p. Combining the above two equations gives that (a(r)ṙ)2 +
(p/b(r))2 = 1, and thus

(2.33) (a(r)ṙ)2 = 1− p2

b(r)2
.
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Let I be the maximal interval of existence of the geodesic (r(t), θ(t)) in M , so
I is of the form [0, T ), [0, T ] or [0,∞) for some T > 0. Now, since ṙ(0) < 0, there
are two possible cases: either ṙ(t) < 0 for all t ∈ I, or ṙ(t̄) = 0 for some t̄ ∈ I.
Assume that we are in the first case. Taking the t-derivative in (2.33) gives

2a(r)ṙ
d

dt
(a(r)ṙ) = 2p2b(r)−3b′(r)ṙ, t ∈ I.

Since ṙ(t) < 0 for all t ∈ I, we may divide by ṙ and obtain

d

dt
(a(r)ṙ) =

p2b(r)−3b′(r)

a(r)
, t ∈ I.

Using the Herglotz condition we have b′(r) > 0 for all r ∈ [r0, r1]. Thus there are
c0, ε0 > 0 so that

(2.34) a(r)ṙ ≥ c0 + ε0t, t ∈ I.
Now if T = ∞ one would get ṙ(t̄) = 0 for some t̄ ∈ I, which is a contradiction.
Hence in the first case where ṙ(t) < 0 for all t ∈ I, the geodesic must reach {r = r0}
in finite time and r(t) is strictly decreasing.

Assume now that we are in the second case where ṙ(t) < 0 for 0 ≤ t < t̄
and ṙ(t̄) = 0 for some t̄ ∈ I. Let ρ = r(t̄) and α = θ(t̄). Since both η(s) =
(r(t̄+s), θ(t̄+s)) and ζ(s) = (r(t̄−s), 2α−θ(t̄−s)) solve the geodesic equations with
the same initial data when s = 0, the geodesic has two branches that are symmetric
with respect to t = t̄. Note that we must have p = ±b(ρ) upon evaluating (2.33) at

t = t̄. If additionally θ̇(0) > 0 then by (2.32) one has p > 0, so in fact p = b(ρ).
Moreover, given any (ρ, α) ∈M we may consider the geodesic with (r(0), θ(0)) =

(ρ, α) and (ṙ(0), θ̇(0)) = (0, 1/b(ρ)) where the value for θ̇(0) is obtained from (2.31)
(the geodesic must have unit speed). The arguments above show that this geodesic
has two symmetric branches, and reaches {r = r1} in finite time by (2.34). The
required geodesic γρ,α is obtained from (r(t), θ(t)) after a translation in t.

The equation for ṙ(t) follows from (2.33), where p = b(ρ). Finally, (2.32) with
p = b(ρ) gives

θ(t′) = α+ b(ρ)

∫ t′

t̄

1

b(r(t))2
dt.

We change variables t = t(r) and use that by (2.29) one has

dt

dr
(r) =

1

ṙ(t(r))
= ∓ a(r)b(r)√

b(r)2 − b(ρ)2
.

This proves (2.30). �

2.4. Geodesic X-ray transform

In this section we prove the result of [Rom67] (see also [Rom87, Sha97])
showing invertibility of the geodesic X-ray transform for radially symmetric metrics
satisfying the Herglotz condition. Let

g = a(r)2 dr2 + b(r)2 dθ2

be a metric in M = {(r, θ) ; r0 < r ≤ r1} satisfying the Herglotz condition b′(r) > 0
for r ∈ [r0, r1]. For f ∈ C∞(M), we wish to study the problem of recovering f
from its integrals over maximal geodesics starting from {r = r1}. By Theorem
2.15 there are two types of geodesics: those that go to {r = r0} in finite time, and
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those that never reach {r = r0} and curve back to {r = r1} in finite time. We
only consider integrals of f over geodesics of the second type. This corresponds to
having measurements only on {r = r1} and not on {r = r0}, which is relevant for
instance in seismic imaging where {r = r1} corresponds to the surface of the Earth.

By Theorem 2.15, for any (ρ, α) ∈ M there is a unique unit speed geodesic
γρ,α(t) joining two points of {r = r1} and having (ρ, α) as its closest point to the
origin. Denote by τ(ρ, α) the length of this geodesic. Given f ∈ C∞(M), we define
its geodesic ray transform by

If(ρ, α) =

∫ τ(ρ,α)

0

f(γρ,α(t)) dt, (ρ, α) ∈M.

The main result in this section shows that under the Herglotz condition the geodesic
X-ray transform is injective, i.e. f is uniquely determined by If .

Theorem 2.16 (Injectivity). Let g satisfy the Herglotz condition in Definition
2.14. If f ∈ C∞(M) satisfies If(ρ, α) = 0 for all (ρ, α) ∈M , then f = 0.

To prove the theorem, we first note that by Theorem 2.15 one has

γρ,α(t) = (r(t), α∓ ψ(ρ, r(t)))

where

(2.35) ψ(ρ, r(t)) := b(ρ)

∫ r(t)

ρ

a(r)

b(r)

1√
b(r)2 − b(ρ)2

dr.

Moreover,
dr

dt
= ∓ 1

a(r)b(r)

√
b(r)2 − b(ρ)2.

Here the sign − corresponds to the first branch of the geodesic where r(t) decreases
from r1 to ρ, and + corresponds to the second branch where r(t) increases.

Changing variables t = t(r), we have

If(ρ, α) =

∫ τ(ρ,α)

0

f(r(t), θ(t))

=

∫ 1
2 τ(ρ,α)

0

f(r(t), α− ψ(ρ, r(t))) dt+

∫ τ(ρ,α)

1
2 τ(ρ,α)

f(r(t), α+ ψ(ρ, r(t))) dt

=

∫ r1

ρ

a(r)b(r)√
b(r)2 − b(ρ)2

f(r, α− ψ(ρ, r)) dr

+

∫ r1

ρ

a(r)b(r)√
b(r)2 − b(ρ)2

f(r, α+ ψ(ρ, r)) dr.(2.36)

Assume for the moment that f is radial, f = f(r). This is analogous to the
result in Theorem 2.7 of determining a radial sound speed c(r) from travel times,
and the proof will use a similar method. If f = f(r), we obtain

(2.37) If(ρ, α) = 2

∫ r1

ρ

a(r)b(r)√
b(r)2 − b(ρ)2

f(r) dr.

We change variables

(2.38) s = b(r)2.
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This is a valid change of variables since b(r) is strictly increasing by the Herglotz
condition. One has

If(ρ, α) = 2

∫ b(r1)2

b(ρ)2

a(r(s))b(r(s))r′(s)

(s− b(ρ)2)1/2
f(r(s)) ds.

This is an Abel transform as in Theorem 2.8, where x corresponds to b(ρ)2. If
If(ρ, α) = 0 for r0 < ρ < r1, it follows from Theorem 2.8 that

a(r(s))b(r(s))r′(s)f(r(s)) = 0, b(r0)2 < s < b(r1)2.

Since a, b and r′ are positive, we get f(r(s)) = 0 for all s and thus f(r) = 0 for
r0 < r < r1 as required.

We next consider the general case where f = f(r, θ) ∈ C∞(M). For any fixed
r, the function f(r, · ) is a smooth 2π-periodic function in R, and it has the Fourier
series

(2.39) f(r, θ) =

∞∑
k=−∞

fk(r)eikθ.

Here the Fourier coefficients fk(r) = 1
2π

∫ π
−π f(r, θ)e−ikθ dθ are smooth functions in

(r0, r1], and the Fourier series converges absolutely and uniformly in {r̄ ≤ r ≤ r1}
whenever r0 < r̄ < r1.

Inserting (2.39) in (2.36), we have

If(ρ, α) =

∞∑
k=−∞

[∫ r1

ρ

a(r)b(r)√
b(r)2 − b(ρ)2

fk(r)2 cos(kψ(ρ, r)) dr

]
eikα.

Denote the expression in brackets by Akfk(ρ). Thus, if If(ρ, α) = 0 for (ρ, α) ∈M ,
then the Fourier coefficients Akfk(ρ) vanish for each k and for r0 < ρ < r1. It
remains to show that each generalized Abel transform Ak is injective. Note that if
k = 0, then A0 is exactly the Abel transform in (2.37) and this was already shown
to be injective.

For k 6= 0, we make the same change of variables as in (2.38) and write

gk(s) = 2a(r(s))b(r(s))r′(s)fk(r(s)).

Then Akfk(ρ) = Tkgk(b(ρ)2), where

Tkgk(x) =

∫ b(r1)2

x

Kk(x, s)

(s− x)1/2
gk(s) ds

where x = x(ρ) = b(ρ)2 takes values in the range b(r0)2 < x ≤ b(r1)2, and

Kk(x, s) = cos(kψ(ρ(x), r(s))).

Since a, b, and r′ are positive, the injectivity of Ak is equivalent with the injectivity
of Tk.

We now record some properties of the functions Kk.

Lemma 2.17. For any k ∈ Z, Kk(x, s) is smooth in {b(r0)2 ≤ x ≤ s ≤ b(r1)2}
and satisfies Kk(x, x) = 1 for all x.

Proof. Changing variables s = b(r)2, we have

ψ(ρ, r) = b(ρ)

∫ b(r)2

b(ρ)2

q(s)

(s− b(ρ)2)1/2
ds
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where q(s) = a(r(s))r′(s)
b(r(s)) is smooth. We further make another change of variables

s = b(ρ)2 + (b(r)2 − b(ρ)2)t to obtain that

ψ(ρ, r) = (b(r)2 − b(ρ)2)1/2G(ρ, r)

where

G(ρ, r) = b(ρ)

∫ 1

0

q(b(ρ)2 + (b(r)2 − b(ρ)2)t)

t1/2
dt.

Here G is smooth since q and b are smooth. Using that cosx = η(x2) where η(t) is
smooth on R (this can be seen by looking at the Taylor series of cosx), it follows
that Kk(x, s) = η(k2ψ(ρ(x), r(s))2) is smooth. Finally, note that x = s corresponds
to ρ = r, which shows that Kk(x, x) = cos(kψ(ρ(x), ρ(x))) = 1. �

The equation Tkgk = F is a singular Volterra integral equation of the first kind
(see [GV91] for a detailed treatment of such equations). The injectivity of Tk now
follows from the next result that extends Theorem 2.8 (which considers the special
case K ≡ 1). This concludes the proof of Theorem 2.16.

Theorem 2.18. Let K ∈ C1(T ) where T := {(x, t) ; α ≤ x ≤ t ≤ β}, and
assume that K(x, x) = 1 for x ∈ [α, β]. Given any f ∈ A((α, β]), there is a unique
solution u ∈ L1

loc((α, β]) of

(2.40)

∫ β

x

K(x, t)

(t− x)1/2
u(t) dt = f(x).

Moreover, if K ∈ C∞(T ) and if f(x) = (β − x)1/2h(x) for some h ∈ C∞((α, β]),
then u ∈ C∞((α, β]).

Proof. We define
H(x, t) := K(x, t)− 1.

Note that H(x, x) = 0 by the assumption on K. The equation (2.40) may be
written as

(2.41) Au+Bu = f

where Au(x) =
∫ β
x

u(t)
(t−x)1/2

dt is the Abel transform, and

Bu(x) :=

∫ β

x

H(x, t)

(t− x)1/2
u(t) dt.

If B ≡ 0 then (2.41) is a standard Abel integral equation and it can be solved using
Theorem 2.8. More generally, we will show that the perturbation B can be handled
by a Volterra iteration.

We first show that B maps any function u ∈ L1
loc((α, β]) into A((α, β]), i.e.

that ABu ∈ W 1,1
loc ((α, β]). We use Fubini’s theorem and the change of variables

s = x+ (t− x)r to compute

ABu(x) =

∫ β

x

∫ β

s

H(s, t)

(s− x)1/2(t− s)1/2
u(t) dt ds

=

∫ β

x

∫ t

x

H(s, t)

(s− x)1/2(t− s)1/2
u(t) ds dt

=

∫ β

x

[∫ 1

0

H(x+ (t− x)r, t)

r1/2(1− r)1/2
dr

]
u(t) dt.
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Thus ABu(x) =
∫ β
x
G(x, t)u(t) dt where G ∈ C1(T ) since K ∈ C1(T ). It follows

that ABu ∈W 1,1
loc ((α, β]). By Theorem 2.8 we may write

Bu = ARu, u ∈ L1
loc((α, β]),

where Ru = − 1
π
d
dxABu. Since H(x, x) = 0 we have G(x, x) = 0, and thus using

the above formula for ABu we have

Ru(x) = − 1

π

∫ β

x

∂xG(x, t)u(t) dt.

In particular, the integral kernel of R is in C0(T ), and it follows that

(2.42) |Ru(x)| ≤ C
∫ β

x

|u(t)| dt.

Since Bu = ARu, the equation (2.41) is equivalent with

A(u+Ru) = f.

Since f ∈ A((α, β]), one has f = Au0 for some u0 ∈ L1
loc((α, β]) by Theorem 2.8.

Because A is injective, (2.41) is further equivalent with the equation

(2.43) u+Ru = u0.

It is enough to show that (2.43) has a unique solution u ∈ L1
loc((α, β]) for any

u0 ∈ L1
loc((α, β]). For uniqueness, if u+Ru = 0, then (2.42) implies that

|u(x)| ≤ C
∫ β

x

|u(t)| dt.

Gronwall’s inequality implies that u ≡ 0. To prove existence, we iterate the bound
(2.42) which yields

|Rju(x)| ≤ C
∫ β

x

|Rj−1u(t1)| dt1 ≤ · · ·

≤ Cj
∫ β

x

∫ β

t1

· · ·
∫ β

tj−1

|u(tj)| dtj · · · dt1

≤ Cj (β − x)j−1

(j − 1)!
‖u‖L1([x,β]).

Thus whenever α < γ < β one has

(2.44) ‖Rju‖L1([γ,β]) ≤
(C(β − γ))j

j!
‖u‖L1([γ,β]).

The series

u :=

∞∑
j=0

(−R)ju0

converges in L1
loc((α, β]) by (2.44), and the resulting function u solves (2.43).

We have proved that given any f ∈ A((α, β]) the equation (2.40) has a unique
solution u ∈ L1

loc((α, β]). Let now K ∈ C∞(T ) and f(x) = (β−x)1/2h(x) for some
h ∈ C∞((α, β]). By Theorem 2.8 one has f = Au0 for some u0 ∈ C∞((α, β]), and
it is enough to show that the solution u of (2.43) is smooth. But if K ∈ C∞(T )
the operator R above has C∞ integral kernel, hence Ru is smooth, and thus also
u = −Ru+ u0 is smooth. This concludes the proof of the theorem. �
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2.5. Examples and counterexamples

In this section we give some examples of manifolds where the geodesic X-ray
transform is injective, and some examples where it is not injective. We first begin
with some remarks on the Herglotz condition.

Let g = a(r)2 dr2 + b(r)2 dθ2 be a metric in M = {r0 < r ≤ r1}, where
a, b ∈ C∞([r0, r1]) are positive. We first give a definition.

Definition 2.19. The circle {r = r̄} is strictly convex (resp. strictly concave)
as a submanifold of (M, g) if for any geodesic (r(t), θ(t)) with r(0) = r̄, ṙ(0) = 0

and θ̇(0) 6= 0, one has r̈(0) > 0 (resp. r̈(0) < 0).

Strict convexity means that any tangential geodesic to the circle {r = r̄} curves
away from this circle toward {r = r1}, with exactly first order contact with the circle
when t = 0. More precisely, we should say that the circle is strictly convex when
viewed from {r = r1} (there is a choice of orientation involved). Strict convexity is
equivalent to the fact that {r = r̄} has positive definite second fundamental form
in (M, g). Conversely, strict concavity means that tangential geodesics to the circle
{r = r̄} have first order contact and curve toward {r = r0}.

Lemma 2.20. Let r0 < r̄ ≤ r1.

(a) {r = r̄} is strictly convex as a submanifold of (M, g) iff b′(r̄) > 0.
(b) The circle t 7→ (r̄, t) is a geodesic of (M, g) iff b′(r̄) = 0.
(c) {r = r̄} is strictly concave as a submanifold of (M, g) iff b′(r̄) < 0.

Proof. If (r(t), θ(t)) is a geodesic with r(0) = r̄ and ṙ(0) = 0, then by (2.25)

(2.45) r̈(0) =
b(r̄)b′(r̄)

a(r̄)2
(θ′(0))2.

If θ̇(0) 6= 0, then r̈(0) has the same sign as b′(r̄) since b is positive. This proves
parts (a) and (c). For part (b), if b′(r̄) = 0, then t 7→ (r̄, t) satisfies the geodesic
equations (2.25)–(2.26). Conversely, if t 7→ (r̄, t) satisfies the geodesic equations,
then r̈(0) = 0 and (2.45) implies that b∂rb/a

2|r=r̄ = 0. One must have b′(r̄) = 0. �

Thus, if the Herglotz condition is violated, either b′ = 0 somewhere and there
is a trapped geodesic (one that never reaches the boundary), or b′ < 0 somewhere
and tangential geodesics curve toward {r = r0}. We also obtain the following
characterization of the Herglotz condition.

Corollary 2.21. The following conditions are equivalent.

(a) The circles {r = r̄} are strictly convex for r0 < r̄ ≤ r1.
(b) b′ ≥ 0 and no circle {r = r̄} is a trapped geodesic for r0 < r̄ ≤ r1.
(c) b′(r) > 0 for r ∈ (r0, r1].

We now go back to Example 2.13 and surfaces of revolution. Recall the setup: r
correspond to the z-coordinate in R3, h : [r0, r1]→ R is a smooth positive function,
and S is the surface of revolution obtained by rotating the graph of r 7→ h(r) about
the z-axis. The surface S is given by

S = {(h(r) cos θ, h(r) sin θ, r) ; r ∈ (r0, r1], θ ∈ [0, 2π]}.
The metric on S induced by the Euclidean metric on R3 has the form

g = (1 + h′(r)2) dr2 + h(r)2 dθ2.
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Thus a(r) =
√

1 + h′(r)2 and b(r) = h(r).
Finally we give four illustrative examples: two examples where the geodesic

X-ray transform is injective, and two examples where it fails to be injective.

Example 2.22 (Small spherical cap). Let h : [r0, r1] → R, h(r) =
√

1− r2

where r0 = −1 and r1 = −α where 0 < α < 1. Then S = Sα corresponds to a
punctured spherical cap strictly contained in a hemisphere:

Sα = {x ∈ S2 ; x3 ≤ −α} \ {−e3}.

Clearly h′ > 0 in [r0, r1]. Thus the Herglotz condition is satisfied, and by Theorem
2.16 the geodesic X-ray transform on Sα is injective whenever 0 < α < 1. More
precisely, a function f can be recovered from its integrals over geodesics that start
and end on the boundary {x3 = −α}, with the geodesics going through the south
pole excluded. Of course, geodesics in Sα are segments of great circles.

Example 2.23 (Large spherical cap). Let h : [r0, r1] → R, h(r) =
√

1− r2

where r0 = −1 and r1 = β where 0 < β < 1. Then S = Sβ corresponds to a
punctured spherical cap that is larger than a hemisphere:

Sβ = {x ∈ S2 ; x3 ≤ β} \ {−e3}.

Now the Herglotz condition is violated: one has h′(r) > 0 for r < 0, but h′(0) = 0
and h′(r) < 0 for r > 0. In particular, the geodesic {r = 0}, which is just the
equator, is a trapped geodesic in Sβ . The great circles close to the equator are
also trapped geodesics, and Sβ is an example of a manifold with strong trapping
properties.

In fact the geodesic X-ray transform is not injective on Sβ (even if the south
pole is included). To see this, let f : S2 → R be an odd function with respect to the
antipodal map, i.e. f(−x) = −f(x), and assume f is supported in {−β < x3 < β}.
For example, one can take f(x) = ϕ(x)−ϕ(−x) where ϕ is a C∞ function supported
in a small neighborhood of e1 with ϕ > 0 near e1.

Using the support condition for f , the integral of f over a maximal geodesic in
(M, g) (a segment of a great circle C in S2) is equal to the integral of f over the
whole great circle C. But since f is odd, its integral over any great circle is zero.
This shows that the geodesic X-ray transform If of f in Sβ vanishes, but f is not
identically zero.

Example 2.24 (Catenoid). Let h : [−1, 1]→ R, h(r) = cosh(r) = er+e−r

2 . The
corresponding surface of revolution is the catenoid

S = {(cosh(r) cos(θ), cosh(r) sin(θ), r) ; r ∈ [−1, 1], θ ∈ [0, 2π]}.

One has h′(r) = sinh(r) = er−e−r
2 . Thus in particular h′(0) = 0 and h′(r) > 0 for

r > 0. Define

S± = {x ∈ S ; ±x3 > 0}.
Then S+ corresponds to h : (r0, r1]→ R with r0 = 0 and r1 = 1. By Theorem 2.16
the geodesic X-ray transform in S+ is injective, when considering geodesics that
start and end on S+ ∩ {x3 = 1}. By symmetry, also the geodesic X-ray transform
on S− is injective for geodesics that start and end on S− ∩ {x3 = −1}. Since
S = S+ ∪ S− ∪ S0 where S0 = S ∩ {x3 = 0} has zero measure, it follows that also
the geodesic X-ray transform on S is injective (any smooth function on S can be
recovered from its integrals starting and ending on ∂S).
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Note that since h′(0) = 0, the geodesic S0 is a trapped geodesic in S. The
manifold S has also other trapped geodesics that start on ∂S and orbit S0 for
infinitely long time. The catenoid is an example of a negatively curved manifold
with weak trapping properties (the trapped set is hyperbolic). Because the trapping
is weak, the geodesic X-ray transform is still invertible in this case.

Example 2.25 (Catenoid type surface with flat cylinder glued in the middle).
Let h : [−1, 1]→ R with h(r) = 1 for r ∈ [− 1

2 ,
1
2 ], h′(r) > 0 for r > 1

2 , and h′(r) < 0

for r < − 1
2 , and let S be the surface of revolution obtained by rotating h|[−1,1].

Then S ∩ {− 1
2 ≤ x3 ≤ 1

2} is a flat cylinder.
Consider a smooth function f in S given by

f(h(r) cos θ, h(r) sin θ, r) = η(r)

where η ∈ C∞c (− 1
2 ,

1
2 ) is nontrivial and satisfies

∫ 1/2

−1/2
η(r) dr = 0. Then f integrates

to zero over any geodesic starting and ending on ∂S. To see this, note that f
vanishes outside the flat cylinder, and any geodesic that enters the flat cylinder must
be a geodesic of the cylinder. Since h ≡ 1 in the cylinder, the metric is dr2 + dθ2,
one has a = b = 1, the geodesic equations are r̈ = θ̈ = 0, and unit speed geodesics
are of the form ζ(t) = (r(t), θ(t)) = (αt+β, γt+δ) where (ṙ)2 +(θ̇)2 = α2 +γ2 = 1.
Thus it follows that ∫

ζ

f dt =

∫
η(αt+ β) dt = 0.

Thus S is an example of a manifold that has a large flat part (the cylinder) with
many trapped geodesics, and the geodesic X-ray transform is not injective. The
reason for non-injectivity is that S contains part of R×S1, and the X-ray transform
on R is not injective (there are nontrivial functions that integrate to zero on R).


