### 2.3. Geodesics of a radially symmetric metric

For the rest of this chapter, it will be convenient to switch from Cartesian coordinates $\left(x_{1}, x_{2}\right)$ to polar coordinates $(r, \theta)$, where $x=(r \cos \theta, r \sin \theta)$. Recall that the Euclidean metric $g=d x_{1}^{2}+d x_{2}^{2}$ looks like $g=d r^{2}+r^{2} d \theta^{2}$ in polar coordinates. Hence the metric $g=c(r)^{-2}\left(d x_{1}^{2}+d x_{2}^{2}\right)$ with radial sound speed $c(r)$ becomes

$$
\begin{equation*}
g=c(r)^{-2} d r^{2}+(r / c(r))^{2} d \theta^{2} \tag{2.23}
\end{equation*}
$$

We will work in the region $M=\left\{(r, \theta) ; r_{0}<r \leq r_{1}\right\}$ where $r_{0}<r_{1}$ (note that $r_{0}$ is not necessarily required to be positive), and consider metrics of the form

$$
\begin{equation*}
g=a(r)^{2} d r^{2}+b(r)^{2} d \theta^{2} \tag{2.24}
\end{equation*}
$$

where $a, b \in C^{\infty}\left(\left[r_{0}, r_{1}\right]\right)$ are positive. Clearly this includes metrics (2.23) with radial sound speed, with $a(r)=1 / c(r)$ and $b(r)=r / c(r)$. However, the two forms turn out to be equivalent:

ExERCISE 2.12. Show that a metric of the form (2.24) can be put in the form (2.23) by a change of variables.

Working with the form (2.24) will be useful in view of the following example.
Example 2.13 (Surfaces of revolution). Let $r$ correspond to the $z$-coordinate in $\mathbb{R}^{3}$, and let $h:\left[r_{0}, r_{1}\right] \rightarrow \mathbb{R}$ be a smooth positive function. Let $S$ be the surface of revolution obtained by rotating the graph of $r \mapsto h(r)$ about the $z$-axis. The surface $S$ is given by $S=\left\{q(r, \theta) ; r \in\left(r_{0}, r_{1}\right], \theta \in[0,2 \pi]\right\}$ where

$$
q(r, \theta)=(h(r) \cos \theta, h(r) \sin \theta, r)
$$

Then $S$ has tangent vectors

$$
\begin{aligned}
& \partial_{r}=\left(h^{\prime}(r) \cos \theta, h^{\prime}(r) \sin \theta, 1\right), \\
& \partial_{\theta}=(-h(r) \sin \theta, h(r) \cos \theta, 0)
\end{aligned}
$$

Equip $S$ with the metric $g$ induced by the Euclidean metric in $\mathbb{R}^{3}$. Since $\partial_{r} \cdot \partial_{r}=$ $1+h^{\prime}(r)^{2}, \partial_{r} \cdot \partial_{\theta}=0$ and $\partial_{\theta} \cdot \partial_{\theta}=h(r)^{2}$, one has

$$
g=\left(1+h^{\prime}(r)^{2}\right) d r^{2}+h(r)^{2} d \theta^{2}
$$

Thus surfaces of revolution have metrics of the form $(2.24)$, where $a(r)=\sqrt{1+h^{\prime}(r)^{2}}$ and $b(r)=h(r)$.

The geodesic equations for the metric (2.24) can be determined by computing the Christoffel symbols

$$
\Gamma_{j k}^{l}=\frac{1}{2} g^{l m}\left(\partial_{j} g_{k m}+\partial_{k} g_{j m}-\partial_{m} g_{j k}\right)
$$

A direct computation shows that

$$
\begin{gathered}
\Gamma_{11}^{1}=\partial_{r} a / a, \quad \Gamma_{12}^{1}=\Gamma_{21}^{1}=0, \quad \Gamma_{22}^{1}=-b \partial_{r} b / a^{2} \\
\Gamma_{11}^{2}=0, \quad \Gamma_{12}^{2}=\Gamma_{21}^{2}=\partial_{r} b / b, \quad \Gamma_{22}^{2}=0
\end{gathered}
$$

Thus the geodesic equations are

$$
\begin{align*}
\ddot{r}+\frac{\partial_{r} a}{a}(\dot{r})^{2}-\frac{b \partial_{r} b}{a^{2}}(\dot{\theta})^{2} & =0  \tag{2.25}\\
\ddot{\theta}+\frac{2 \partial_{r} b}{b} \dot{r} \dot{\theta} & =0 \tag{2.26}
\end{align*}
$$

The conserved quantities (speed and angular momentum) corresponding to (2.7) and (2.8) are given as follows:

$$
\begin{gather*}
(a(r) \dot{r})^{2}+(b(r) \dot{\theta})^{2} \text { is conserved, }  \tag{2.27}\\
b(r)^{2} \dot{\theta} \text { is conserved. } \tag{2.28}
\end{gather*}
$$

In fact, the first quantity is conserved since geodesics have constant speed, and the fact that the second quantity is conserved follows directly by taking its $t$-derivative and using the second geodesic equation.

As in Theorem 2.6, we would like that when a geodesic reaches its deepest point where $\dot{r}=0$, it turns back toward the surface (i.e. $\ddot{r}>0$ ). Now the equation (2.25) implies that

$$
\dot{r}=0 \Longrightarrow \ddot{r}=\frac{b \partial_{r} b}{a^{2}}(\dot{\theta})^{2}
$$

Thus, when $\dot{r}=0$, one has $\ddot{r}>0$ iff $b^{\prime}>0$. This is the analogue of the Herglotz condition. For a radial sound speed as in (2.23), one has $b(r)=r / c(r)$ and the condition $b^{\prime}>0$ is equivalent with $\frac{d}{d r}\left(\frac{r}{c(r)}\right)>0$.

Definition 2.14. A metric $g=a(r)^{2} d r^{2}+b(r)^{2} d \theta^{2}$, where $a, b \in C^{\infty}\left(\left[r_{0}, r_{1}\right]\right)$ are positive, satisfies the Herglotz condition if

$$
b^{\prime}(r)>0, \quad r \in\left[r_{0}, r_{1}\right] .
$$

The following result is the analogue of Theorem 2.6.
Theorem 2.15 (Geodesics). Let $g$ satisfy the Herglotz condition as in Definition 2.14. Let $(r(t), \theta(t))$ be a unit speed geodesic with $r(0)=r_{1}$ and $\dot{r}(0)<0$. There are two types of geodesics: either $r(t)$ strictly decreases to $\left\{r=r_{0}\right\}$ in finite time, or the geodesic stays in $M$ and goes back to $\left\{r=r_{1}\right\}$ in finite time. Geodesics of the second type have a unique closest point $(\rho, \alpha)$ to the origin, and they consist of two symmetric branches where first $r(t)$ strictly decreases from $r_{1}$ to $\rho$, and then $r(t)$ strictly increases from $\rho$ to $r_{1}$. Moreover, for any $(\rho, \alpha) \in M$ there is a unique such geodesic $\gamma_{\rho, \alpha}(t)=(r(t), \theta(t))$ with $\dot{\theta}(0)>0$, and it satisfies

$$
\begin{align*}
\dot{r} & =\mp \frac{1}{a(r) b(r)} \sqrt{b(r)^{2}-b(\rho)^{2}}  \tag{2.29}\\
\theta(t) & =\alpha \mp b(\rho) \int_{\rho}^{r(t)} \frac{a(r)}{b(r)} \frac{1}{\sqrt{b(r)^{2}-b(\rho)^{2}}} d r \tag{2.30}
\end{align*}
$$

where - corresponds to the first branch where $r(t)$ decreases, and + corresponds to the second branch where $r(t)$ increases.

Proof. Since the geodesic has unit speed, (2.27) implies that

$$
\begin{equation*}
(a(r) \dot{r})^{2}+(b(r) \dot{\theta})^{2}=1 \tag{2.31}
\end{equation*}
$$

Moreover, (2.28) implies that

$$
\begin{equation*}
b(r)^{2} \dot{\theta}=p \tag{2.32}
\end{equation*}
$$

for some constant $p$. Combining the above two equations gives that $(a(r) \dot{r})^{2}+$ $(p / b(r))^{2}=1$, and thus

$$
\begin{equation*}
(a(r) \dot{r})^{2}=1-\frac{p^{2}}{b(r)^{2}} \tag{2.33}
\end{equation*}
$$

Let $I$ be the maximal interval of existence of the geodesic $(r(t), \theta(t))$ in $M$, so $I$ is of the form $[0, T),[0, T]$ or $[0, \infty)$ for some $T>0$. Now, since $\dot{r}(0)<0$, there are two possible cases: either $\dot{r}(t)<0$ for all $t \in I$, or $\dot{r}(\bar{t})=0$ for some $\bar{t} \in I$. Assume that we are in the first case. Taking the $t$-derivative in (2.33) gives

$$
2 a(r) \dot{r} \frac{d}{d t}(a(r) \dot{r})=2 p^{2} b(r)^{-3} b^{\prime}(r) \dot{r}, \quad t \in I
$$

Since $\dot{r}(t)<0$ for all $t \in I$, we may divide by $\dot{r}$ and obtain

$$
\frac{d}{d t}(a(r) \dot{r})=\frac{p^{2} b(r)^{-3} b^{\prime}(r)}{a(r)}, \quad t \in I
$$

Using the Herglotz condition we have $b^{\prime}(r)>0$ for all $r \in\left[r_{0}, r_{1}\right]$. Thus there are $c_{0}, \varepsilon_{0}>0$ so that

$$
\begin{equation*}
a(r) \dot{r} \geq c_{0}+\varepsilon_{0} t, \quad t \in I \tag{2.34}
\end{equation*}
$$

Now if $T=\infty$ one would get $\dot{r}(\bar{t})=0$ for some $\bar{t} \in I$, which is a contradiction. Hence in the first case where $\dot{r}(t)<0$ for all $t \in I$, the geodesic must reach $\left\{r=r_{0}\right\}$ in finite time and $r(t)$ is strictly decreasing.

Assume now that we are in the second case where $\dot{r}(t)<0$ for $0 \leq t<\bar{t}$ and $\dot{r}(\bar{t})=0$ for some $\bar{t} \in I$. Let $\rho=r(\bar{t})$ and $\alpha=\theta(\bar{t})$. Since both $\eta(s)=$ $(r(\bar{t}+s), \theta(\bar{t}+s))$ and $\zeta(s)=(r(\bar{t}-s), 2 \alpha-\theta(\bar{t}-s))$ solve the geodesic equations with the same initial data when $s=0$, the geodesic has two branches that are symmetric with respect to $t=\bar{t}$. Note that we must have $p= \pm b(\rho)$ upon evaluating (2.33) at $t=\bar{t}$. If additionally $\dot{\theta}(0)>0$ then by (2.32) one has $p>0$, so in fact $p=b(\rho)$.

Moreover, given any $(\rho, \alpha) \in M$ we may consider the geodesic with $(r(0), \theta(0))=$ $(\rho, \alpha)$ and $(\dot{r}(0), \dot{\theta}(0))=(0,1 / b(\rho))$ where the value for $\dot{\theta}(0)$ is obtained from (2.31) (the geodesic must have unit speed). The arguments above show that this geodesic has two symmetric branches, and reaches $\left\{r=r_{1}\right\}$ in finite time by (2.34). The required geodesic $\gamma_{\rho, \alpha}$ is obtained from $(r(t), \theta(t))$ after a translation in $t$.

The equation for $\dot{r}(t)$ follows from (2.33), where $p=b(\rho)$. Finally, (2.32) with $p=b(\rho)$ gives

$$
\theta\left(t^{\prime}\right)=\alpha+b(\rho) \int_{\bar{t}}^{t^{\prime}} \frac{1}{b(r(t))^{2}} d t
$$

We change variables $t=t(r)$ and use that by (2.29) one has

$$
\frac{d t}{d r}(r)=\frac{1}{\dot{r}(t(r))}=\mp \frac{a(r) b(r)}{\sqrt{b(r)^{2}-b(\rho)^{2}}}
$$

This proves (2.30).

### 2.4. Geodesic X-ray transform

In this section we prove the result of $[\mathbf{R o m 6 7}]$ (see also [Rom87, Sha97]) showing invertibility of the geodesic X-ray transform for radially symmetric metrics satisfying the Herglotz condition. Let

$$
g=a(r)^{2} d r^{2}+b(r)^{2} d \theta^{2}
$$

be a metric in $M=\left\{(r, \theta) ; r_{0}<r \leq r_{1}\right\}$ satisfying the Herglotz condition $b^{\prime}(r)>0$ for $r \in\left[r_{0}, r_{1}\right]$. For $f \in C^{\infty}(M)$, we wish to study the problem of recovering $f$ from its integrals over maximal geodesics starting from $\left\{r=r_{1}\right\}$. By Theorem 2.15 there are two types of geodesics: those that go to $\left\{r=r_{0}\right\}$ in finite time, and
those that never reach $\left\{r=r_{0}\right\}$ and curve back to $\left\{r=r_{1}\right\}$ in finite time. We only consider integrals of $f$ over geodesics of the second type. This corresponds to having measurements only on $\left\{r=r_{1}\right\}$ and not on $\left\{r=r_{0}\right\}$, which is relevant for instance in seismic imaging where $\left\{r=r_{1}\right\}$ corresponds to the surface of the Earth.

By Theorem 2.15, for any $(\rho, \alpha) \in M$ there is a unique unit speed geodesic $\gamma_{\rho, \alpha}(t)$ joining two points of $\left\{r=r_{1}\right\}$ and having $(\rho, \alpha)$ as its closest point to the origin. Denote by $\tau(\rho, \alpha)$ the length of this geodesic. Given $f \in C^{\infty}(M)$, we define its geodesic ray transform by

$$
I f(\rho, \alpha)=\int_{0}^{\tau(\rho, \alpha)} f\left(\gamma_{\rho, \alpha}(t)\right) d t, \quad(\rho, \alpha) \in M
$$

The main result in this section shows that under the Herglotz condition the geodesic X-ray transform is injective, i.e. $f$ is uniquely determined by $I f$.

Theorem 2.16 (Injectivity). Let g satisfy the Herglotz condition in Definition 2.14. If $f \in C^{\infty}(M)$ satisfies $I f(\rho, \alpha)=0$ for all $(\rho, \alpha) \in M$, then $f=0$.

To prove the theorem, we first note that by Theorem 2.15 one has

$$
\gamma_{\rho, \alpha}(t)=(r(t), \alpha \mp \psi(\rho, r(t)))
$$

where

$$
\begin{equation*}
\psi(\rho, r(t)):=b(\rho) \int_{\rho}^{r(t)} \frac{a(r)}{b(r)} \frac{1}{\sqrt{b(r)^{2}-b(\rho)^{2}}} d r \tag{2.35}
\end{equation*}
$$

Moreover,

$$
\frac{d r}{d t}=\mp \frac{1}{a(r) b(r)} \sqrt{b(r)^{2}-b(\rho)^{2}}
$$

Here the sign - corresponds to the first branch of the geodesic where $r(t)$ decreases from $r_{1}$ to $\rho$, and + corresponds to the second branch where $r(t)$ increases.

Changing variables $t=t(r)$, we have

$$
\begin{aligned}
\operatorname{If}(\rho, \alpha)= & \int_{0}^{\tau(\rho, \alpha)} f(r(t), \theta(t)) \\
= & \int_{0}^{\frac{1}{2} \tau(\rho, \alpha)} f(r(t), \alpha-\psi(\rho, r(t))) d t+\int_{\frac{1}{2} \tau(\rho, \alpha)}^{\tau(\rho, \alpha)} f(r(t), \alpha+\psi(\rho, r(t))) d t \\
= & \int_{\rho}^{r_{1}} \frac{a(r) b(r)}{\sqrt{b(r)^{2}-b(\rho)^{2}}} f(r, \alpha-\psi(\rho, r)) d r \\
& \quad+\int_{\rho}^{r_{1}} \frac{a(r) b(r)}{\sqrt{b(r)^{2}-b(\rho)^{2}}} f(r, \alpha+\psi(\rho, r)) d r
\end{aligned}
$$

Assume for the moment that $f$ is radial, $f=f(r)$. This is analogous to the result in Theorem 2.7 of determining a radial sound speed $c(r)$ from travel times, and the proof will use a similar method. If $f=f(r)$, we obtain

$$
\begin{equation*}
I f(\rho, \alpha)=2 \int_{\rho}^{r_{1}} \frac{a(r) b(r)}{\sqrt{b(r)^{2}-b(\rho)^{2}}} f(r) d r \tag{2.37}
\end{equation*}
$$

We change variables

$$
\begin{equation*}
s=b(r)^{2} \tag{2.38}
\end{equation*}
$$

This is a valid change of variables since $b(r)$ is strictly increasing by the Herglotz condition. One has

$$
I f(\rho, \alpha)=2 \int_{b(\rho)^{2}}^{b\left(r_{1}\right)^{2}} \frac{a(r(s)) b(r(s)) r^{\prime}(s)}{\left(s-b(\rho)^{2}\right)^{1 / 2}} f(r(s)) d s
$$

This is an Abel transform as in Theorem 2.8, where $x$ corresponds to $b(\rho)^{2}$. If $I f(\rho, \alpha)=0$ for $r_{0}<\rho<r_{1}$, it follows from Theorem 2.8 that

$$
a(r(s)) b(r(s)) r^{\prime}(s) f(r(s))=0, \quad b\left(r_{0}\right)^{2}<s<b\left(r_{1}\right)^{2}
$$

Since $a, b$ and $r^{\prime}$ are positive, we get $f(r(s))=0$ for all $s$ and thus $f(r)=0$ for $r_{0}<r<r_{1}$ as required.

We next consider the general case where $f=f(r, \theta) \in C^{\infty}(M)$. For any fixed $r$, the function $f(r, \cdot)$ is a smooth $2 \pi$-periodic function in $\mathbb{R}$, and it has the Fourier series

$$
\begin{equation*}
f(r, \theta)=\sum_{k=-\infty}^{\infty} f_{k}(r) e^{i k \theta} \tag{2.39}
\end{equation*}
$$

Here the Fourier coefficients $f_{k}(r)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(r, \theta) e^{-i k \theta} d \theta$ are smooth functions in $\left(r_{0}, r_{1}\right]$, and the Fourier series converges absolutely and uniformly in $\left\{\bar{r} \leq r \leq r_{1}\right\}$ whenever $r_{0}<\bar{r}<r_{1}$.

Inserting (2.39) in (2.36), we have

$$
I f(\rho, \alpha)=\sum_{k=-\infty}^{\infty}\left[\int_{\rho}^{r_{1}} \frac{a(r) b(r)}{\sqrt{b(r)^{2}-b(\rho)^{2}}} f_{k}(r) 2 \cos (k \psi(\rho, r)) d r\right] e^{i k \alpha}
$$

Denote the expression in brackets by $A_{k} f_{k}(\rho)$. Thus, if $I f(\rho, \alpha)=0$ for $(\rho, \alpha) \in M$, then the Fourier coefficients $A_{k} f_{k}(\rho)$ vanish for each $k$ and for $r_{0}<\rho<r_{1}$. It remains to show that each generalized Abel transform $A_{k}$ is injective. Note that if $k=0$, then $A_{0}$ is exactly the Abel transform in (2.37) and this was already shown to be injective.

For $k \neq 0$, we make the same change of variables as in (2.38) and write

$$
g_{k}(s)=2 a(r(s)) b(r(s)) r^{\prime}(s) f_{k}(r(s))
$$

Then $A_{k} f_{k}(\rho)=T_{k} g_{k}\left(b(\rho)^{2}\right)$, where

$$
T_{k} g_{k}(x)=\int_{x}^{b\left(r_{1}\right)^{2}} \frac{K_{k}(x, s)}{(s-x)^{1 / 2}} g_{k}(s) d s
$$

where $x=x(\rho)=b(\rho)^{2}$ takes values in the range $b\left(r_{0}\right)^{2}<x \leq b\left(r_{1}\right)^{2}$, and

$$
K_{k}(x, s)=\cos (k \psi(\rho(x), r(s)))
$$

Since $a, b$, and $r^{\prime}$ are positive, the injectivity of $A_{k}$ is equivalent with the injectivity of $T_{k}$.

We now record some properties of the functions $K_{k}$.
Lemma 2.17. For any $k \in \mathbb{Z}, K_{k}(x, s)$ is smooth in $\left\{b\left(r_{0}\right)^{2} \leq x \leq s \leq b\left(r_{1}\right)^{2}\right\}$ and satisfies $K_{k}(x, x)=1$ for all $x$.

Proof. Changing variables $s=b(r)^{2}$, we have

$$
\psi(\rho, r)=b(\rho) \int_{b(\rho)^{2}}^{b(r)^{2}} \frac{q(s)}{\left(s-b(\rho)^{2}\right)^{1 / 2}} d s
$$

where $q(s)=\frac{a(r(s)) r^{\prime}(s)}{b(r(s))}$ is smooth. We further make another change of variables $s=b(\rho)^{2}+\left(b(r)^{2}-b(\rho)^{2}\right) t$ to obtain that

$$
\psi(\rho, r)=\left(b(r)^{2}-b(\rho)^{2}\right)^{1 / 2} G(\rho, r)
$$

where

$$
G(\rho, r)=b(\rho) \int_{0}^{1} \frac{q\left(b(\rho)^{2}+\left(b(r)^{2}-b(\rho)^{2}\right) t\right)}{t^{1 / 2}} d t
$$

Here $G$ is smooth since $q$ and $b$ are smooth. Using that $\cos x=\eta\left(x^{2}\right)$ where $\eta(t)$ is smooth on $\mathbb{R}$ (this can be seen by looking at the Taylor series of $\cos x$ ), it follows that $K_{k}(x, s)=\eta\left(k^{2} \psi(\rho(x), r(s))^{2}\right)$ is smooth. Finally, note that $x=s$ corresponds to $\rho=r$, which shows that $K_{k}(x, x)=\cos (k \psi(\rho(x), \rho(x)))=1$.

The equation $T_{k} g_{k}=F$ is a singular Volterra integral equation of the first kind (see [GV91] for a detailed treatment of such equations). The injectivity of $T_{k}$ now follows from the next result that extends Theorem 2.8 (which considers the special case $K \equiv 1$ ). This concludes the proof of Theorem 2.16.

Theorem 2.18. Let $K \in C^{1}(T)$ where $T:=\{(x, t) ; \alpha \leq x \leq t \leq \beta\}$, and assume that $K(x, x)=1$ for $x \in[\alpha, \beta]$. Given any $f \in \mathcal{A}((\alpha, \beta])$, there is a unique solution $u \in L_{\text {loc }}^{1}((\alpha, \beta])$ of

$$
\begin{equation*}
\int_{x}^{\beta} \frac{K(x, t)}{(t-x)^{1 / 2}} u(t) d t=f(x) \tag{2.40}
\end{equation*}
$$

Moreover, if $K \in C^{\infty}(T)$ and if $f(x)=(\beta-x)^{1 / 2} h(x)$ for some $h \in C^{\infty}((\alpha, \beta])$, then $u \in C^{\infty}((\alpha, \beta])$.

Proof. We define

$$
H(x, t):=K(x, t)-1
$$

Note that $H(x, x)=0$ by the assumption on $K$. The equation (2.40) may be written as

$$
\begin{equation*}
A u+B u=f \tag{2.41}
\end{equation*}
$$

where $A u(x)=\int_{x}^{\beta} \frac{u(t)}{(t-x)^{1 / 2}} d t$ is the Abel transform, and

$$
B u(x):=\int_{x}^{\beta} \frac{H(x, t)}{(t-x)^{1 / 2}} u(t) d t
$$

If $B \equiv 0$ then (2.41) is a standard Abel integral equation and it can be solved using Theorem 2.8. More generally, we will show that the perturbation $B$ can be handled by a Volterra iteration.

We first show that $B$ maps any function $u \in L_{\text {loc }}^{1}((\alpha, \beta])$ into $\mathcal{A}((\alpha, \beta])$, i.e. that $A B u \in W_{\mathrm{loc}}^{1,1}((\alpha, \beta])$. We use Fubini's theorem and the change of variables $s=x+(t-x) r$ to compute

$$
\begin{aligned}
A B u(x) & =\int_{x}^{\beta} \int_{s}^{\beta} \frac{H(s, t)}{(s-x)^{1 / 2}(t-s)^{1 / 2}} u(t) d t d s \\
& =\int_{x}^{\beta} \int_{x}^{t} \frac{H(s, t)}{(s-x)^{1 / 2}(t-s)^{1 / 2}} u(t) d s d t \\
& =\int_{x}^{\beta}\left[\int_{0}^{1} \frac{H(x+(t-x) r, t)}{r^{1 / 2}(1-r)^{1 / 2}} d r\right] u(t) d t .
\end{aligned}
$$

2.4. GEODESIC X-RAY TRANSFORM

Thus $A B u(x)=\int_{x}^{\beta} G(x, t) u(t) d t$ where $G \in C^{1}(T)$ since $K \in C^{1}(T)$. It follows that $A B u \in W_{\text {loc }}^{1,1}((\alpha, \beta])$. By Theorem 2.8 we may write

$$
B u=A R u, \quad u \in L_{\mathrm{loc}}^{1}((\alpha, \beta]),
$$

where $R u=-\frac{1}{\pi} \frac{d}{d x} A B u$. Since $H(x, x)=0$ we have $G(x, x)=0$, and thus using the above formula for $A B u$ we have

$$
R u(x)=-\frac{1}{\pi} \int_{x}^{\beta} \partial_{x} G(x, t) u(t) d t
$$

In particular, the integral kernel of $R$ is in $C^{0}(T)$, and it follows that

$$
\begin{equation*}
|R u(x)| \leq C \int_{x}^{\beta}|u(t)| d t \tag{2.42}
\end{equation*}
$$

Since $B u=A R u$, the equation (2.41) is equivalent with

$$
A(u+R u)=f
$$

Since $f \in \mathcal{A}((\alpha, \beta])$, one has $f=A u_{0}$ for some $u_{0} \in L_{\text {loc }}^{1}((\alpha, \beta])$ by Theorem 2.8. Because $A$ is injective, (2.41) is further equivalent with the equation

$$
\begin{equation*}
u+R u=u_{0} \tag{2.43}
\end{equation*}
$$

It is enough to show that (2.43) has a unique solution $u \in L_{\text {loc }}^{1}((\alpha, \beta])$ for any $u_{0} \in L_{\text {loc }}^{1}((\alpha, \beta])$. For uniqueness, if $u+R u=0$, then (2.42) implies that

$$
|u(x)| \leq C \int_{x}^{\beta}|u(t)| d t
$$

Gronwall's inequality implies that $u \equiv 0$. To prove existence, we iterate the bound (2.42) which yields

$$
\begin{aligned}
\left|R^{j} u(x)\right| & \leq C \int_{x}^{\beta}\left|R^{j-1} u\left(t_{1}\right)\right| d t_{1} \leq \cdots \\
& \leq C^{j} \int_{x}^{\beta} \int_{t_{1}}^{\beta} \cdots \int_{t_{j-1}}^{\beta}\left|u\left(t_{j}\right)\right| d t_{j} \cdots d t_{1} \\
& \leq C^{j} \frac{(\beta-x)^{j-1}}{(j-1)!}\|u\|_{L^{1}([x, \beta])}
\end{aligned}
$$

Thus whenever $\alpha<\gamma<\beta$ one has

$$
\begin{equation*}
\left\|R^{j} u\right\|_{L^{1}([\gamma, \beta])} \leq \frac{(C(\beta-\gamma))^{j}}{j!}\|u\|_{L^{1}([\gamma, \beta])} \tag{2.44}
\end{equation*}
$$

The series

$$
u:=\sum_{j=0}^{\infty}(-R)^{j} u_{0}
$$

converges in $L_{\text {loc }}^{1}((\alpha, \beta])$ by (2.44), and the resulting function $u$ solves (2.43).
We have proved that given any $f \in \mathcal{A}((\alpha, \beta])$ the equation (2.40) has a unique solution $u \in L_{\mathrm{loc}}^{1}((\alpha, \beta])$. Let now $K \in C^{\infty}(T)$ and $f(x)=(\beta-x)^{1 / 2} h(x)$ for some $h \in C^{\infty}((\alpha, \beta])$. By Theorem 2.8 one has $f=A u_{0}$ for some $u_{0} \in C^{\infty}((\alpha, \beta])$, and it is enough to show that the solution $u$ of (2.43) is smooth. But if $K \in C^{\infty}(T)$ the operator $R$ above has $C^{\infty}$ integral kernel, hence $R u$ is smooth, and thus also $u=-R u+u_{0}$ is smooth. This concludes the proof of the theorem.

### 2.5. Examples and counterexamples

In this section we give some examples of manifolds where the geodesic X-ray transform is injective, and some examples where it is not injective. We first begin with some remarks on the Herglotz condition.

Let $g=a(r)^{2} d r^{2}+b(r)^{2} d \theta^{2}$ be a metric in $M=\left\{r_{0}<r \leq r_{1}\right\}$, where $a, b \in C^{\infty}\left(\left[r_{0}, r_{1}\right]\right)$ are positive. We first give a definition.

Definition 2.19. The circle $\{r=\bar{r}\}$ is strictly convex (resp. strictly concave) as a submanifold of $(M, g)$ if for any geodesic $(r(t), \theta(t))$ with $r(0)=\bar{r}, \dot{r}(0)=0$ and $\dot{\theta}(0) \neq 0$, one has $\ddot{r}(0)>0$ (resp. $\ddot{r}(0)<0)$.

Strict convexity means that any tangential geodesic to the circle $\{r=\bar{r}\}$ curves away from this circle toward $\left\{r=r_{1}\right\}$, with exactly first order contact with the circle when $t=0$. More precisely, we should say that the circle is strictly convex when viewed from $\left\{r=r_{1}\right\}$ (there is a choice of orientation involved). Strict convexity is equivalent to the fact that $\{r=\bar{r}\}$ has positive definite second fundamental form in $(M, g)$. Conversely, strict concavity means that tangential geodesics to the circle $\{r=\bar{r}\}$ have first order contact and curve toward $\left\{r=r_{0}\right\}$.

Lemma 2.20. Let $r_{0}<\bar{r} \leq r_{1}$.
(a) $\{r=\bar{r}\}$ is strictly convex as a submanifold of $(M, g)$ iff $b^{\prime}(\bar{r})>0$.
(b) The circle $t \mapsto(\bar{r}, t)$ is a geodesic of $(M, g)$ iff $b^{\prime}(\bar{r})=0$.
(c) $\{r=\bar{r}\}$ is strictly concave as a submanifold of $(M, g)$ iff $b^{\prime}(\bar{r})<0$.

Proof. If $(r(t), \theta(t))$ is a geodesic with $r(0)=\bar{r}$ and $\dot{r}(0)=0$, then by (2.25)

$$
\begin{equation*}
\ddot{r}(0)=\frac{b(\bar{r}) b^{\prime}(\bar{r})}{a(\bar{r})^{2}}\left(\theta^{\prime}(0)\right)^{2} \tag{2.45}
\end{equation*}
$$

If $\dot{\theta}(0) \neq 0$, then $\ddot{r}(0)$ has the same sign as $b^{\prime}(\bar{r})$ since $b$ is positive. This proves parts (a) and (c). For part (b), if $b^{\prime}(\bar{r})=0$, then $t \mapsto(\bar{r}, t)$ satisfies the geodesic equations (2.25)-(2.26). Conversely, if $t \mapsto(\bar{r}, t)$ satisfies the geodesic equations, then $\ddot{r}(0)=0$ and (2.45) implies that $b \partial_{r} b /\left.a^{2}\right|_{r=\bar{r}}=0$. One must have $b^{\prime}(\bar{r})=0$.

Thus, if the Herglotz condition is violated, either $b^{\prime}=0$ somewhere and there is a trapped geodesic (one that never reaches the boundary), or $b^{\prime}<0$ somewhere and tangential geodesics curve toward $\left\{r=r_{0}\right\}$. We also obtain the following characterization of the Herglotz condition.

Corollary 2.21. The following conditions are equivalent.
(a) The circles $\{r=\bar{r}\}$ are strictly convex for $r_{0}<\bar{r} \leq r_{1}$.
(b) $b^{\prime} \geq 0$ and no circle $\{r=\bar{r}\}$ is a trapped geodesic for $r_{0}<\bar{r} \leq r_{1}$.
(c) $b^{\prime}(r)>0$ for $r \in\left(r_{0}, r_{1}\right]$.

We now go back to Example 2.13 and surfaces of revolution. Recall the setup: $r$ correspond to the $z$-coordinate in $\mathbb{R}^{3}, h:\left[r_{0}, r_{1}\right] \rightarrow \mathbb{R}$ is a smooth positive function, and $S$ is the surface of revolution obtained by rotating the graph of $r \mapsto h(r)$ about the $z$-axis. The surface $S$ is given by

$$
S=\left\{(h(r) \cos \theta, h(r) \sin \theta, r) ; r \in\left(r_{0}, r_{1}\right], \theta \in[0,2 \pi]\right\} .
$$

The metric on $S$ induced by the Euclidean metric on $\mathbb{R}^{3}$ has the form

$$
g=\left(1+h^{\prime}(r)^{2}\right) d r^{2}+h(r)^{2} d \theta^{2}
$$

Thus $a(r)=\sqrt{1+h^{\prime}(r)^{2}}$ and $b(r)=h(r)$.
Finally we give four illustrative examples: two examples where the geodesic X-ray transform is injective, and two examples where it fails to be injective.

Example 2.22 (Small spherical cap). Let $h:\left[r_{0}, r_{1}\right] \rightarrow \mathbb{R}, h(r)=\sqrt{1-r^{2}}$ where $r_{0}=-1$ and $r_{1}=-\alpha$ where $0<\alpha<1$. Then $S=S_{\alpha}$ corresponds to a punctured spherical cap strictly contained in a hemisphere:

$$
S_{\alpha}=\left\{x \in S^{2} ; x_{3} \leq-\alpha\right\} \backslash\left\{-e_{3}\right\}
$$

Clearly $h^{\prime}>0$ in $\left[r_{0}, r_{1}\right]$. Thus the Herglotz condition is satisfied, and by Theorem 2.16 the geodesic X-ray transform on $S_{\alpha}$ is injective whenever $0<\alpha<1$. More precisely, a function $f$ can be recovered from its integrals over geodesics that start and end on the boundary $\left\{x_{3}=-\alpha\right\}$, with the geodesics going through the south pole excluded. Of course, geodesics in $S_{\alpha}$ are segments of great circles.

ExAMPLE 2.23 (Large spherical cap). Let $h:\left[r_{0}, r_{1}\right] \rightarrow \mathbb{R}, h(r)=\sqrt{1-r^{2}}$ where $r_{0}=-1$ and $r_{1}=\beta$ where $0<\beta<1$. Then $S=S_{\beta}$ corresponds to a punctured spherical cap that is larger than a hemisphere:

$$
S_{\beta}=\left\{x \in S^{2} ; x_{3} \leq \beta\right\} \backslash\left\{-e_{3}\right\} .
$$

Now the Herglotz condition is violated: one has $h^{\prime}(r)>0$ for $r<0$, but $h^{\prime}(0)=0$ and $h^{\prime}(r)<0$ for $r>0$. In particular, the geodesic $\{r=0\}$, which is just the equator, is a trapped geodesic in $S_{\beta}$. The great circles close to the equator are also trapped geodesics, and $S_{\beta}$ is an example of a manifold with strong trapping properties.

In fact the geodesic X-ray transform is not injective on $S_{\beta}$ (even if the south pole is included). To see this, let $f: S^{2} \rightarrow \mathbb{R}$ be an odd function with respect to the antipodal map, i.e. $f(-x)=-f(x)$, and assume $f$ is supported in $\left\{-\beta<x_{3}<\beta\right\}$. For example, one can take $f(x)=\varphi(x)-\varphi(-x)$ where $\varphi$ is a $C^{\infty}$ function supported in a small neighborhood of $e_{1}$ with $\varphi>0$ near $e_{1}$.

Using the support condition for $f$, the integral of $f$ over a maximal geodesic in $(M, g)$ (a segment of a great circle $C$ in $S^{2}$ ) is equal to the integral of $f$ over the whole great circle $C$. But since $f$ is odd, its integral over any great circle is zero. This shows that the geodesic X-ray transform $I f$ of $f$ in $S_{\beta}$ vanishes, but $f$ is not identically zero.

Example 2.24 (Catenoid). Let $h:[-1,1] \rightarrow \mathbb{R}, h(r)=\cosh (r)=\frac{e^{r}+e^{-r}}{2}$. The corresponding surface of revolution is the catenoid

$$
S=\{(\cosh (r) \cos (\theta), \cosh (r) \sin (\theta), r) ; r \in[-1,1], \theta \in[0,2 \pi]\}
$$

One has $h^{\prime}(r)=\sinh (r)=\frac{e^{r}-e^{-r}}{2}$. Thus in particular $h^{\prime}(0)=0$ and $h^{\prime}(r)>0$ for $r>0$. Define

$$
S_{ \pm}=\left\{x \in S ; \pm x_{3}>0\right\}
$$

Then $S_{+}$corresponds to $h:\left(r_{0}, r_{1}\right] \rightarrow \mathbb{R}$ with $r_{0}=0$ and $r_{1}=1$. By Theorem 2.16 the geodesic X-ray transform in $S_{+}$is injective, when considering geodesics that start and end on $S_{+} \cap\left\{x_{3}=1\right\}$. By symmetry, also the geodesic X-ray transform on $S_{-}$is injective for geodesics that start and end on $S_{-} \cap\left\{x_{3}=-1\right\}$. Since $S=S_{+} \cup S_{-} \cup S_{0}$ where $S_{0}=S \cap\left\{x_{3}=0\right\}$ has zero measure, it follows that also the geodesic X-ray transform on $S$ is injective (any smooth function on $S$ can be recovered from its integrals starting and ending on $\partial S$ ).

Note that since $h^{\prime}(0)=0$, the geodesic $S_{0}$ is a trapped geodesic in $S$. The manifold $S$ has also other trapped geodesics that start on $\partial S$ and orbit $S_{0}$ for infinitely long time. The catenoid is an example of a negatively curved manifold with weak trapping properties (the trapped set is hyperbolic). Because the trapping is weak, the geodesic X-ray transform is still invertible in this case.

Example 2.25 (Catenoid type surface with flat cylinder glued in the middle). Let $h:[-1,1] \rightarrow \mathbb{R}$ with $h(r)=1$ for $r \in\left[-\frac{1}{2}, \frac{1}{2}\right], h^{\prime}(r)>0$ for $r>\frac{1}{2}$, and $h^{\prime}(r)<0$ for $r<-\frac{1}{2}$, and let $S$ be the surface of revolution obtained by rotating $\left.h\right|_{[-1,1]}$. Then $S \cap\left\{-\frac{1}{2} \leq x_{3} \leq \frac{1}{2}\right\}$ is a flat cylinder.

Consider a smooth function $f$ in $S$ given by

$$
f(h(r) \cos \theta, h(r) \sin \theta, r)=\eta(r)
$$

where $\eta \in C_{c}^{\infty}\left(-\frac{1}{2}, \frac{1}{2}\right)$ is nontrivial and satisfies $\int_{-1 / 2}^{1 / 2} \eta(r) d r=0$. Then $f$ integrates to zero over any geodesic starting and ending on $\partial S$. To see this, note that $f$ vanishes outside the flat cylinder, and any geodesic that enters the flat cylinder must be a geodesic of the cylinder. Since $h \equiv 1$ in the cylinder, the metric is $d r^{2}+d \theta^{2}$, one has $a=b=1$, the geodesic equations are $\ddot{r}=\ddot{\theta}=0$, and unit speed geodesics are of the form $\zeta(t)=(r(t), \theta(t))=(\alpha t+\beta, \gamma t+\delta)$ where $(\dot{r})^{2}+(\dot{\theta})^{2}=\alpha^{2}+\gamma^{2}=1$. Thus it follows that

$$
\int_{\zeta} f d t=\int \eta(\alpha t+\beta) d t=0
$$

Thus $S$ is an example of a manifold that has a large flat part (the cylinder) with many trapped geodesics, and the geodesic X-ray transform is not injective. The reason for non-injectivity is that $S$ contains part of $\mathbb{R} \times S^{1}$, and the X-ray transform on $\mathbb{R}$ is not injective (there are nontrivial functions that integrate to zero on $\mathbb{R}$ ).

