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Preface

This monograph is devoted to geometric inverse problems in two dimensions.
Inverse problems arise in various fields of science and engineering, frequently in
connection with imaging methods where one attempts to produce images of the
interior of an unknown object by making indirect measurements outside. A stan-
dard example is X-ray computed tomography (CT) in medical imaging. There one
sends X-rays through the patient and measures how much the rays are attenuated
along the way. From these measurements one would like to determine the attenua-
tion coefficient of the tissues inside. If the X-rays are sent along a two-dimensional
cross-section (identified with R2) of the patient, the X-ray measurements corre-
spond to the Radon transform Rf of the unknown attenuation function f in R2.
Here, Rf just encodes the integrals of f along all straight lines in R2. The easy
direct problem in X-ray CT would be to determine the Radon transform Rf when
f is known. However, in order to produce images one needs to solve the inverse
problem: determine f when Rf is known (i.e. invert the Radon transform).

One can divide the mathematical analysis of the Radon transform inverse prob-
lem in several parts, including the following:

• (Uniqueness) If Rf1 = Rf2, does it follow that f1 = f2?
• (Stability) If Rf1 and Rf2 are close, are f1 and f2 close in suitable norms?

Is there stability with respect to noise or measurement errors?
• (Reconstruction) Is there an efficient algorithm for reconstructing f from

the knowledge of Rf?
• (Range characterization) Which functions are of the form Rf for some f?
• (Partial data) Can one determine (some information on) f from partial

knowledge of Rf?

In this monograph we will study inverse problems in geometric settings. For
X-ray type problems this will mean that straight lines are replaced by more general
curves. A particularly clean setting, which is still relevant for several applications,
is given by geodesic curves of a smooth Riemannian metric. We will focus on
this setting and formulate our questions on compact Riemannian manifolds (M, g)
with smooth boundary. This corresponds to working with compactly supported
functions in the Radon transform problem.

We will now briefly describe the main geometric inverse problems studied here.
Our first question is a direct generalization of the Radon transform problem.

1. Geodesic X-ray transform. Is it possible to determine an
unknown function f in (M, g) from the knowledge of its integrals
over maximal geodesics?

ix
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This is a fundamental inverse problem that is related to several other inverse
problems, in particular in seismic imaging applications. A classical related prob-
lem is to determine the interior structure of Earth by measuring travel times of
earthquakes. In a mathematical idealization, we may suppose that Earth is a ball
M ⊂ R3 and that waves generated by earthquakes follow the geodesics of a Rie-
mannian metric g determined by the sound speed in different substructures. If an
earthquake is generated at a point x ∈ ∂M , then the first arrival time of that earth-
quake to a seismic station at y ∈ ∂M is the geodesic distance dg(x, y). The travel
time tomography problem, originating in geophysics in the early 20th century, is
to determine the metric g (i.e. the sound speed in M) from the geodesic distances
between boundary points. The same problem arose much later in pure mathematics
and differential geometry. It can be formulated as follows:

2. Boundary rigidity problem. Is it possible to determine
the metric in (M, g), up to a boundary fixing isometry, from the
knowledge of the boundary distance function dg|∂M×∂M?

The geodesic X-ray transform problem is in fact precisely the linearization of
the boundary rigidity problem for metrics in a fixed conformal class. If one removes
the restriction to a fixed conformal class, the linearization of the boundary rigidity
problem is a tensor tomography problem. To describe such a problem, let (M, g)
be a compact Riemannian n-manifold with smooth boundary, and let m ≥ 0. The
geodesic X-ray transform on symmetric m-tensor fields is an operator Im defined
by

Imf(γ) =

∫
γ

fj1···jm(γ(t))γ̇j1(t) · · · γ̇jm(t) dt, γ is a maximal geodesic in M,

where f = fj1···jm dx
j1 ⊗ · · · ⊗ dxjm is a smooth symmetric m-tensor field on M .

Here and throughout this monograph we employ the Einstein summation convention
where a repeated lower and upper index is summed. In the above case this means
that

fj1···jm dx
j1 ⊗ · · · ⊗ dxjm =

n∑
j1,...,jm=1

fj1···jm dx
j1 ⊗ · · · ⊗ dxjm .

If m ≥ 1 the operator Im always has a nontrivial kernel: one has Im(σ∇h) = 0
whenever h is a smooth symmetric (m − 1)-tensor field with h|∂M = 0, ∇ is the
total covariant derivative, and σ denotes the symmetrization of a tensor. Tensors
of the form σ∇h are called potential tensors. If m = 1, this just means that
I1(dh) = 0 whenever h ∈ C∞(M) satisfies h|∂M = 0. Any 1-tensor field f has a
solenoidal decomposition f = v+dh where v is solenoidal (i.e. divergence-free) and
h|∂M = 0. Thus it is only possible to determine the solenoidal part of a 1-tensor f
from I1f . This decomposition generalizes to tensors of arbitrary order, leading to
the following inverse problem.

3. Tensor tomography problem. Is it possible to determine
the solenoidal part of an m-tensor field f in (M, g) from the
knowledge of Imf?

A variant of the geodesic X-ray transform, arising in applications such as
SPECT (single photon emission computed tomography), includes an attenuation
factor. In this case, f ∈ C∞(M) is a source function and a ∈ C∞(M) is an



PREFACE xi

attenuation coefficient, and one can measure integrals like

Iaf(γ) =

∫
γ

e
∫ t
0
a(γ(s)) dsf(γ(t)) dt, γ is a maximal geodesic.

This is the attenuated geodesic X-ray transform of f , and a typical inverse problem
is to determine f from Iaf when a is assumed to be known. Clearly this reduces
to the standard geodesic X-ray transform when a = 0. Similar questions appear
in mathematical physics, where the attenuation coefficient is replaced by a connec-
tion or a Higgs field on some vector bundle over M . This roughly corresponds to
replacing the function a(x) by a matrix valued function or a 1-form.

4. Attenuated geodesic X-ray transform. Is it possible to
determine a function f in (M, g) from its attenuated geodesic
X-ray transform, when the attenuation is given by a connection
and a Higgs field?

This question also arises as the linearization of the scattering rigidity problem
for a connection/Higgs field. One can ask related questions for tensor fields and
also for more general weighted X-ray transforms.

Finally, we consider a geometric inverse problem of a somewhat different nature.
Consider the Dirichlet problem for the Laplace equation in (M, g),{

∆gu = 0 in M,

u = f on ∂M.

Here ∆g is the Laplace-Beltrami operator on (M, g), given in local coordinates by

∆gu = |g|−1/2∂xj (|g|1/2gjk∂xku)

where (gjk) is the inverse matrix of g = (gjk), and |g| = det(gjk). This is a uniformly
elliptic operator, and there is a unique solution u ∈ C∞(M) for any f ∈ C∞(∂M).
The Dirichlet-to-Neumann map Λg takes the Dirichlet data of u to Neumann data,

Λg : f 7→ ∂νu|∂M
where ∂νu|∂M = du(ν)|∂M with ν denoting the inner unit normal to ∂M .

The above problem is related to Electrical Impedance Tomography, where the
objective is to determine the electrical properties of a medium by making voltage
and current measurements on its boundary. Here the metric g corresponds to the
electrical resistivity of the medium, and for a prescribed boundary voltage f one
measures the corresponding current flux ∂νu at the boundary. Thus the electrical
measurements are encoded by the Dirichlet-to-Neumann map Λg. There are natural
gauge invariances: the map Λg remains unchanged under a boundary fixing isometry
of (M, g), and when dim(M) = 2 there is an additional invariance due to conformal
changes of the metric. This leads to the following inverse problem.

5. Calderón problem. Is it possible to determine the metric
in (M, g), up to gauge, from the knowledge of the Dirichlet-to-
Neumann map Λg?

In this monograph we will discuss known results for the above problems when
(M, g) is two-dimensional. The reason for restricting to the two-dimensional setting
is that the available results and methods are slightly different in three and higher
dimensions. Moreover, the two-dimensional theory is at the moment fairly well
developed in the context of simple manifolds. A compact Riemannian manifold
(M, g) with smooth boundary is called simple if
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• the boundary ∂M is strictly convex (the second fundamental form of ∂M
is positive definite),

• M is nontrapping (any geodesic reaches the boundary in finite time), and
• M has no conjugate points.

Examples of simple manifolds include strictly convex domains in Euclidean space,
strictly convex simply connected domains in nonpositively curved manifolds, strictly
convex subdomains of the hemisphere, and small metric perturbations of these.

In this book we will show that questions 1-4 above have a positive answer on
two-dimensional simple manifolds, and question 5 has a positive answer on any two-
dimensional manifold. In particular, this gives a positive answer in two dimensions
to the boundary rigidity problem posed by Michel in [Mic82]. The original proof of
this result by Pestov and Uhlmann [PU05] employs striking connections between
the above problems: in fact, it uses the solution of the geodesic X-ray transform
problem and the Calderón problem in order to solve the boundary rigidity problem.

We will also see that there are counterexamples to questions 1-4 if one goes
outside the class of simple manifolds. However, it is an outstanding open problem
whether questions 1-4 have positive answers in the class of strictly convex nontrap-
ping manifolds (i.e. whether the no conjugate points assumption can be removed).



CHAPTER 1

The Radon transform in the plane

In this chapter we will study basic properties of the Radon transform in the
plane. In this setting it is possible to give precise results on uniqueness, stability,
reconstruction, and range characterization for the related inverse problem. We will
also discuss the normal operator and show that it is an elliptic pseudodifferential
operator. These results will act as model cases for the corresponding geodesic X-ray
transform results in later chapters. The results are rather classical, and we refer to
[Hel99] and [Nat01] for more detailed treatments.

1.1. Uniqueness and stability

The X-ray transform If of a function f in Rn encodes the integrals of f over
all straight lines, whereas the Radon transform Rf encodes the integrals of f over
(n − 1)-dimensional affine planes. We will focus on the case n = 2, where the two
transforms coincide. There are many ways to parametrize the set of lines in R2.
We will parametrize lines by their normal vector ω and signed distance s from the
origin.

Definition 1.1. If f ∈ C∞c (R2), the Radon transform of f is the function

Rf(s, ω) :=

∫ ∞
−∞

f(sω + tω⊥) dt, s ∈ R, ω ∈ S1.

Here ω⊥ is the vector in S1 obtained by rotating ω counterclockwise by 90◦.

Remark 1.2. The parametrization of lines by (s, ω) as above is called the par-
allel beam geometry, which is commonly used for the Radon transform in the plane.
When studying the geodesic X-ray transform in later chapters we will however use
a different parametrization, the fan beam geometry, which is customary in that
context.

The Radon transform arises in medical imaging in the context of X-ray com-
puted tomography. In this imaging method, X-rays are sent through the patient
from various locations and angles, and one measures how much the rays are at-
tenuated. The measurements correspond to integrals of the unknown attenuation
coefficient in the body along straight lines. Moreover, the imaging is often carried
out in two-dimensional cross sections of the body, and the idealized measurements
(corresponding to X-rays sent from all locations and angles) correspond exactly to
the two-dimensional Radon transform. This leads to the basic inverse problem in
X-ray computed tomography.

Inverse problem: determine the attenuation function f in R2 from X-ray
measurements encoded by the Radon transform Rf .

1
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It is easy to see that given any f ∈ C∞c (R2), one has Rf ∈ C∞(R × S1) and
for each ω ∈ S1 the function Rf( · , ω) is compactly supported in R. Moreover, the
Radon transform enjoys the following invariance under translations:

R(f( · − s0ω))(s, ω) = Rf(s− s0, ω).

Exercise 1.3. Prove the properties for R stated in the previous paragraph.

The translation invariance suggests that the Radon transform should behave
well under Fourier transforms. Indeed, there is a well-known relation between Rf

and the Fourier transform f̂ = Ff given by the Fourier slice theorem. Here, for
h ∈ C∞c (Rn) we use the convention

ĥ(ξ) = Fh(ξ) =

∫
Rn
e−ix·ξh(x) dx, ξ ∈ Rn.

Recall the following facts regarding the Fourier transform in Rn (see e.g. [Hör85,
Chapter 7] for more details):

1. The Fourier transform is bounded L1(Rn)→ L∞(Rn).
2. The Fourier transform is bijective S (Rn)→ S (Rn), where S (Rn) is the

Schwartz space consisting of all f ∈ C∞(Rn) so that xα∂βf ∈ L∞(Rn)
for all α, β ∈ Nn0 .

3. Any f ∈ S (Rn) can be recovered from its Fourier transform f̂ by the
Fourier inversion formula

f(x) = F−1f̂(x) = (2π)−n
∫
Rn
eix·ξ f̂(ξ) dξ, x ∈ Rn.

4. For f, g ∈ S (Rn) one has the Parseval identity∫
Rn
f̂(ξ)ĝ(ξ) dξ = (2π)n

∫
Rn
f(x)g(x) dx

and the Plancherel formula

‖f̂‖L2(Rn) = (2π)n/2‖f‖L2(Rn).

5. Fourier transform converts derivatives to polynomials:

fourier_transform_derivativefourier_transform_derivative (1.1) (Djf )̂ = ξj f̂(ξ)

where Dj = 1
i
∂
∂xj

.

Exercise 1.4. Show that R maps S (R2) to C∞(R × S1). A more precise
result will be given in Theorem 1.15.

We will denote by (Rf )̃ ( · , ω) the Fourier transform of Rf with respect to s.

thm_fourier_slice Theorem 1.5 (Fourier slice theorem). If f ∈ C∞c (R2), then

(Rf )̃ (σ, ω) = f̂(σω).

Proof. Parametrizing R2 by y = sω + tω⊥, we have

(Rf )̃ (σ, ω) =

∫ ∞
−∞

e−iσs
[∫ ∞
−∞

f(sω + tω⊥) dt

]
ds =

∫
R2

e−iσy·ωf(y) dy

= f̂(σω). �

This result gives uniqueness in the inverse problem for the Radon transform:
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corollary_radon_injectivity Theorem 1.6 (Uniqueness). If f1, f2 ∈ C∞c (R2) are such that Rf1 = Rf2,
then f1 = f2.

Proof. Since R is linear, it is enough to write f = f1 − f2 and to show that

Rf ≡ 0 implies f ≡ 0. But if Rf ≡ 0, then f̂ ≡ 0 by Theorem 1.5 and consequently
f ≡ 0 by Fourier inversion. �

In fact, it is easy to prove a quantitative version of the above uniqueness result
stating that if Rf1 ≈ Rf2, then f1 ≈ f2 (in suitable norms). Given any s ∈ R, we
will employ the Sobolev norms

‖f‖Hs(R2) := ‖(1 + |ξ|2)s/2f̂(ξ)‖L2(R2),

‖Rf‖HsT (R×S1) := ‖(1 + σ2)s/2(Rf )̃ (σ, ω)‖L2(R×S1).

Exercise 1.7. If m ≥ 0 is an integer, use the Plancherel theorem for the
Fourier transform to show that

‖f‖H2m(R2) ∼
∑
|α|≤2m

‖∂αf‖L2(R2),

‖Rf‖H2m
T (R×S1) ∼

2m∑
j=0

‖∂jsRf‖L2(R×S1)

where A ∼ B means that cA ≤ B ≤ CA for some constants c, C > 0 which are
independent of f .

Thus, roughly, the Hs(R2) norm of f measures the size of the first s derivatives
of f in L2. A similar statement holds for the Ht

T norm of Rf , with the difference
that the Ht

T norm only involves derivatives in the s variable but not in ω.

thm_radon_stability Theorem 1.8 (Stability). If s ∈ R, then for any f1, f2 ∈ C∞c (R2) one has

‖f1 − f2‖Hs(R2) ≤
1√
2
‖Rf1 −Rf2‖Hs+1/2

T (R×S1)
.

Proof. Let f = f1 − f2. Using polar coordinates, we obtain that

‖f‖2Hs(R2) = ‖(1 + |ξ|2)s/2f̂‖2L2(R2) =

∫ ∞
0

∫
S1

(1 + σ2)s|f̂(σω)|2σ dω dσ

=
1

2

∫ ∞
−∞

∫
S1

(1 + σ2)s|f̂(σω)|2|σ| dω dσ

=
1

2

∫ ∞
−∞

∫
S1

(1 + σ2)s|(Rf )̃ (σ, ω)|2|σ| dω dσ.f_hs_squaredf_hs_squared (1.2)

In particular, since |σ| ≤ (1 + σ2)1/2, this implies the stability estimate

‖f‖2Hs(R2) ≤
1

2
‖Rf‖2

H
s+1/2
T (R×S1)

. �

If f is supported in a fixed compact set, the previous inequality can be reversed.

thm_radon_continuity Theorem 1.9 (Continuity). Let s ∈ R and let K ⊂ Rn be compact. There is
a constant CK > 0 so that for any f ∈ C∞c (R2) with supp(f) ⊂ K one has

‖Rf‖
H
s+1/2
T (R×S1)

≤ CK‖f‖Hs(R2).

Exercise 1.10. Prove Theorem 1.9 when s ≥ 0 by splitting the last integral
in (1.2) in two parts, one over {|σ| ≤ 1} and the other over {|σ| > 1}.
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Exercise 1.11. Prove Theorem 1.9 for all s ∈ R. This requires the Sobolev
duality assertion |

∫
Rn fh dx| ≤ ‖f‖Hs‖h‖H−s .

remark_radon_continuity Remark 1.12. Theorem 1.9 implies that the Radon transform extends as a
bounded map

R : Hs
K(R2)→ H

s+1/2
T (R× S1)

where Hs
K(R2) = {f ∈ Hs(R2) ; supp(f) ⊂ K}. In fact one may replace the

H
s+1/2
T norm on the right by the Hs+1/2 norm (see for instance [Nat01, Theorem

II.5.2]). Thus, in a sense, the Radon transform in the plane is smoothing of order
1/2 (it adds 1/2 derivatives). We also observe that Theorems 1.8 and 1.9 yield the
two-sided inequality

√
2‖f‖Hs ≤ ‖Rf‖Hs+1/2

T (R×S1)
≤ CK‖f‖Hs , f ∈ Hs

K(R2).

1.2. Range and support theorems

We will next consider the range characterization problem: which functions in
R× S1 are of the form Rf for some f ∈ C∞c (R2)? There is an obvious restriction:
one has

hl_range_condition_firsthl_range_condition_first (1.3) Rf(−s,−ω) = Rf(s, ω),

i.e. Rf is always even. Another restriction comes from studying the moments

µk(Rf)(ω) =

∫ ∞
−∞

sk(Rf)(s, ω) ds, k ≥ 0, ω ∈ S1.

It is easy to see that

hl_range_condition_secondhl_range_condition_second (1.4) for any k ≥ 0, µk(Rf) is a homogeneous polynomial of degree k in ω.

This means that µk(Rf)(ω) =
∑2
j1,...,jk=1 aj1···jkωj1 · · ·ωjk for some constants

aj1···jk .

Exercise 1.13. Prove that Rf always satisfies (1.3) and (1.4).

It turns out that these conditions (called Helgason-Ludwig range conditions)
are essentially the only restrictions. We will first consider range characterization
on S (R2). To do this, we need to define a Schwartz space on R× S1.

Definition 1.14. The space S (R × S1) is the set of all ϕ ∈ C∞(R × S1) so
that (1 + s2)k∂lsϕ ∈ L∞(R× S1) for all k, l ≥ 0. We write SH(R× S1) for the set
of all functions ϕ ∈ S (R × S1) that satisfy the Helgason-Ludwig conditions, i.e.
(1.3) and (1.4).

The following result is a Radon transform analogue of the fact that the Fourier
transform is bijective S (R2)→ S (R2).

thm_range_schwartz Theorem 1.15 (Range characterization on Schwartz space). The Radon trans-
form is bijective S (R2)→ SH(R× S1).

The proof of Theorem 1.15 is outlined in the following exercises (the proof may
be also be found in [Hel99]).

Exercise 1.16. Show that R maps S (R2) into SH(R× S1).

Exercise 1.17. Show that R is injective on S (R2). (It is enough to verify
that the Fourier slice theorem holds for Schwartz functions.)
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Exercise 1.18. Given ϕ ∈ SH(R × S1), show that there exists f ∈ S (R2)
with Rf = ϕ as follows:

(i) By the Fourier slice theorem one should have f̂(σω) = ϕ̃(σ, ω). Motivated
by this, define the function F on R2 \ {0} by

F (ξ) := ϕ̃(|ξ|, ξ/|ξ|), ξ ∈ R2 \ {0}.

(One wants to eventually show that F = f̂ for the required function f .)
Show that F is C∞ in R2 \ {0}.

(ii) Show that F is Schwartz near infinity, i.e. ξα∂βF ∈ L∞(R2 \B(0, 1)) for
α, β ∈ Nn0 .

(iii) Show that F can be extended continuously near 0, by using the fact that
µ0ϕ(ω) is homogeneous of degree 0 (i.e. a constant).

(iv) Use the fact that each µkϕ is homogeneous of degree k to show that F
can be extended as a C∞ function near 0.

(v) Now that F is known to be in S (R2), let f be the inverse Fourier trans-
form of F and show that Rf = ϕ.

There is a similar range characterization for the Radon transform when rapid
decay is replaced by compact support conditions.

thm_range_compact Theorem 1.19 (Range characterization on C∞c (R2)). The map R is bijective
C∞c (R2)→ DH(R× S1), where

DH(R× S1) = SH(R× S1) ∩ C∞c (R× S1).

In fact, Theorem 1.19 is an immediate consequence of Theorem 1.15 and the
following fundamental result:

Theorem 1.20 (Helgason support theorem). Let f be a continuous function
on R2 such that |x|kf ∈ L∞(R2) for any k ≥ 0. If A > 0 and if Rf(s, ω) = 0
whenever |s| > A and ω ∈ S1, then f(x) = 0 whenever |x| > A.

The above result will not be needed later, and we refer to [Hel99] for its proof.
However, we will prove a closely related result.

thm_radon_local_uniqueness Theorem 1.21 (Local uniqueness). Let B be a ball in R2, and let f ∈ Cc(R2)
be supported in B. Let x0 ∈ ∂B and let L0 be the tangent line to ∂B through x0.
If f integrates to zero along any line L in a small neighborhood of L0, then f = 0
near x0.

Proof. We will prove the result assuming that f ∈ C∞c (R2) and that f is
supported in B (the general case is given as an exercise). After a translation and
rotation we may assume that x0 = 0, B ⊂ {xn ≥ 0}, and L0 is the x-axis. It is
convenient to use a slightly different parametrization of lines and to consider the
operator

Pf(ξ, η) =

∫ ∞
−∞

f(t, ξt+ η) dt, ξ, η ∈ R.

The assumption implies that Pf(ξ, η) = 0 for (ξ, η) in some neighborhood V of
(0, 0). Since f ∈ C∞c (R2), we may take derivatives in ξ so that

∂ξPf(ξ, η) =

∫ ∞
−∞

t∂x2f(t, ξt+ η) dt = ∂ηP (x1f)(ξ, η).
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Since Pf(ξ, η) = 0 for (ξ, η) ∈ V , we have P (x1f)(ξ, η) = c(ξ) in V . But taking η
negative and using the support condition for f gives c(ξ) = 0 for ξ close to 0, i.e.
P (x1f)(ξ, η) = 0. Repeating this argument gives

P (xk1f)(ξ, η) = 0 near (0, 0) for any k ≥ 0.

In particular, choosing ξ = 0 gives∫ ∞
−∞

tkf(t, η) dt = 0 for η near 0 whenever k ≥ 0.

This means that all moments of f( · , η) vanish, and it follows that f( · , η) = 0 for
η near 0 (see the following exercise). Thus f vanishes in a neighborhood of 0. �

Exercise 1.22. If f ∈ Cc(R) and
∫∞
−∞ tkf(t) dt = 0 for any k ≥ 0, show that

f = 0. (You may use the Weierstrass approximation theorem).

Exercise 1.23. Prove Theorem 1.21 for functions f ∈ Cc(R2) supported in B.
Hint: consider mollifications fε(x) =

∫
R2 f(x−y)ϕε(y) dy where ϕε(x) = ε−nϕ(x/ε)

is a standard mollifier, and show that the Radon transform of fε vanishes along
certain lines when ε is small.

1.3. The normal operator and singularities

1.3.1. Normal operator. We will now proceed to studying the normal op-
erator R∗R of the Radon transform, where the formal adjoint R∗ is defined with
respect to the natural L2 inner products on R2 and R× S1. A computation shows
that R∗ is the backprojection operator1

R∗ : C∞(R× S1)→ C∞(R2), R∗h(y) =

∫
S1

h(y · ω, ω) dω.

The following result shows that the normal operator R∗R corresponds to multi-
plication by 4π

|ξ| on the Fourier side, and gives an inversion formula for reconstructing

f from Rf .

theorem_normal_operator_radon Theorem 1.24 (Normal operator). One has

R∗R = 4π|D|−1 = F−1

{
4π

|ξ|
F ( · )

}
,

and f can be recovered from Rf by the formula

f =
1

4π
|D|R∗Rf.

Remark 1.25. Above we have written, for α ∈ R,

|D|αf := F−1{|ξ|αf̂(ξ)}.
The notation (−∆)α/2 = |D|α is also used.

1The formula for R∗ is obtained as follows: if f ∈ C∞c (R2), h ∈ C∞(R× S1) one has

(Rf, h)L2(R×S1) =

∫ ∞
−∞

∫
S1

Rf(s, ω)h(s, ω) dω ds

=

∫ ∞
−∞

∫
S1

∫ ∞
−∞

f(sω + tω⊥)h(s, ω) dt dω ds

=

∫
R2

f(y)

(∫
S1

h(y · ω, ω) dω

)
dy.
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Proof. The proof is based on computing (Rf,Rg)L2(R×S1) using the Parseval
identity, Fourier slice theorem, symmetry and polar coordinates:

(R∗Rf, g)L2(R2) = (Rf,Rg)L2(R×S1)

=

∫
S1

[∫ ∞
−∞

(Rf)(s, ω)(Rg)(s, ω) ds

]
dω

=
1

2π

∫
S1

[∫ ∞
−∞

(Rf )̃ (σ, ω)(Rg)̃ (σ, ω)

]
dσ dω

=
1

2π

∫
S1

[∫ ∞
−∞

f̂(σω)ĝ(σω)

]
dσ dω

=
2

2π

∫
S1

[∫ ∞
0

f̂(σω)ĝ(σω)

]
dσ dω

=
2

2π

∫
R2

1

|ξ|
f̂(ξ)ĝ(ξ) dξ

= (4πF−1

{
1

|ξ|
f̂(ξ)

}
, g). �

The same argument, based on computing (|Ds|1/2Rf, |Ds|1/2Rg)L2(R×S1) in-
stead of (Rf,Rg)L2(R×S1), leads to the famous filtered backprojection (FBP) inver-
sion formula:

Theorem 1.26 (Filtered backprojection). If f ∈ C∞c (R2), then

f =
1

4π
R∗|Ds|Rf

where |Ds|Rf = F−1{|σ|(Rf )̃ }.

The FBP formula is efficient to implement and gives accurate reconstructions
when one has complete X-ray data and relatively small noise, and hence FBP
(together with its variants) has been commonly used in X-ray CT scanners.

1.3.2. Recovery of singularities. We will later study X-ray transforms in
more general geometries. In such cases exact reconstruction formulas such as FBP
are often not available. However, it will be important that some structural proper-
ties of the normal operator may still be valid. In particular, Theorem 1.24 implies
that the normal operator is an elliptic pseudodifferential operator of order −1 in R2.
The theory of pseudodifferential operators (i.e. microlocal analysis) then immedi-
ately yields that the singularities of f are uniquely determined from the knowledge
of Rf . For the benefit of those readers who are not familiar with these notions, we
will give a short presentation partly without proofs.

For a reference to distribution theory see [Hör85, vol. I], and for wave front
sets see [Hör85, Chapter 8]. Sobolev wave front sets are considered in [Hör85,
Section 18.1].

We first define compactly supported distributions.

Definition 1.27. Define the set of compactly supported distributions in Rn as

E ′(Rn) =
⋃
s∈R

Hs
comp(Rn).



8 1. THE RADON TRANSFORM IN THE PLANE

This definition coincides with the more standard ones defining E ′(Rn) as the
dual of C∞(Rn) with a suitable topology, or as the compactly supported distribu-
tions in D ′(Rn). By Remark 1.12, the Radon transform R is well defined in E ′(R2).
We also recall that the Fourier transform maps E ′(Rn) to C∞(Rn).

We next discuss the singular support of u, which consists of those points x0

such that u is not a smooth function in any neighborhood of x0. We also consider
the Sobolev singular support, which also measures the ”strength” of the singularity
(in the L2 Sobolev scale).

Definition 1.28 (Singular support). We say that a function or distribution u
in Rn is C∞ (resp. Hα) near x0 if there is ϕ ∈ C∞c (Rn) with ϕ = 1 near x0 such
that ϕu is in C∞(Rn) (resp. in Hα(Rn)). We define

sing supp(u) = Rn \ {x0 ∈ Rn ; u is C∞ near x0},
sing suppα(u) = Rn \ {x0 ∈ Rn ; u is Hα near x0}.

example_piecewise_constant Example 1.29. Let D1, . . . , DN be bounded domains with C∞ boundary in
Rn so that Dj ∩Dk = ∅ for j 6= k, and define

u =

N∑
j=1

cjχDj

where cj 6= 0 are constants, and χDj is the characteristic function of Dj . Then

sing suppα(u) = ∅ for α < 1/2

since u ∈ Hα for α < 1/2, but

sing suppα(u) =

N⋃
j=1

∂Dj for α ≥ 1/2

since u is not H1/2 near any boundary point. Thus in this case the singularities of
u are exactly at the points where u has a jump discontinuity, and their strength is
precisely H1/2. Knowing the singularities of u can already be useful in applications.
For instance, if u represents some internal medium properties in medical imaging,
the singularities of u could determine the location of interfaces between different
tissues. On the other hand, if u represents an image, then the singularities in some
sense determine the ”sharp features” of the image.

Next we discuss the wave front set which is a more refined notion of a singu-
larity. For example, if f = χD is the characteristic function of a bounded strictly
convex C∞ domain D and if x0 ∈ ∂D, one could think that f is in some sense
smooth in tangential directions at x0 (since f restricted to a tangent hyperplane is
identically zero, except possibly at x0), but that f is not smooth in normal direc-
tions at x0 since in these directions there is a jump. The wave front set is a subset
of T ∗Rn \ 0, the cotangent space with the zero section removed:

T ∗Rn \ 0 := {(x, ξ) ; x, ξ ∈ Rn, ξ 6= 0}.

Definition 1.30 (Wave front set). Let u be a distribution in Rn. We say that
u is (microlocally) C∞ (resp. Hα) near (x0, ξ0) if there exist ϕ ∈ C∞c (Rn) with
ϕ = 1 near x0 and ψ ∈ C∞(Rn \ {0}) so that ψ = 1 near ξ0 and ψ is homogeneous
of degree 0, such that

for any N there is CN > 0 so that ψ(ξ)(ϕu)̂ (ξ) ≤ CN (1 + |ξ|)−N
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(resp. F−1{ψ(ξ)(ϕu)̂ (ξ)} ∈ Hα(Rn)). The wave front set WF (u) (resp. Hα wave
front set WFα(u)) consists of those points (x0, ξ0) where u is not microlocally C∞

(resp. Hα).

Example 1.31. The wave front set of the function u in Example 1.29 is

WF (u) =

N⋃
j=1

N∗(Dj)

where N∗(Dj) is the conormal bundle of Dj ,

N∗(Dj) := {(x, ξ) ; x ∈ ∂Dj and ξ is normal to ∂Dj at x}.

The wave front set describes singularities more precisely than the singular sup-
port, since one always has

wave_front_set_projectionwave_front_set_projection (1.5) π(WF (u)) = sing supp(u)

where π : (x, ξ) 7→ x is the projection to x-space.
We now go back to the Radon transform. If one is mainly interested in the

singularities of the image function f , then instead of using FBP to reconstruct
the whole function f from Rf it is possible to use the even simpler backprojection
method : just apply the backprojection operator R∗ to the data Rf . Since R∗R is
an elliptic pseudodifferential operator, the singularities are completely recovered:

thm_normal_operator_singularities Theorem 1.32. If f ∈ E ′(R2), then

sing supp(R∗Rf) = sing supp(f),

WF(R∗Rf) = WF(f).

Moreover, for any α ∈ R one has

sing suppα+1(R∗Rf) = sing suppα(f),

WFα+1(R∗Rf) = WFα(f).

Remark 1.33. Since R∗R is a pseudodifferential operator of order −1, hence
smoothing of order 1, one expects that R∗Rf gives a slightly blurred version of
f where the main singularities are be visible. The previous theorem makes this
precise and shows the singularities in R∗Rf are one Sobolev degree smoother than
those in f .

1.3.3. Pseudodifferential operators. For the proof of Theorem 1.32 we
recall quickly some relevant definitions, based on the following example. We refer
to [Hör85, Chapter 18] for a detailed account on pseudodifferential operators.

Example 1.34 (Differential operators). Let A = a(x,D) be a differential op-
erator of order m, acting on functions f ∈ S (Rn) by

Af(x) = a(x,D)f(x) =
∑
|α|≤m

aα(x)Dαf(x)

where aα ∈ C∞(Rn). Here D = 1
i∇, so that Dα = ( 1

i ∂x1
)α1 · · · ( 1

i ∂xn)αn .
If each aα is a constant, i.e. aα(x) = aα and A = a(D) =

∑
|α|≤m aαD

α, we

may use (1.1) to compute the Fourier transform of Af :

(Af )̂ (ξ) =
∑
|α|≤m

aαξ
αf̂(ξ).
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The Fourier inversion formula gives that

a_constant_symbola_constant_symbol (1.6) Af(x) = (2π)−n
∫
Rn
eix·ξa(ξ)f̂(ξ) dξ

where a(ξ) =
∑
|α|≤m aαξ

α is the symbol of A(D).

More generally, if each aα is a C∞ function with ∂βaα ∈ L∞(Rn) for all β ∈ Nn0 ,
we may use the Fourier inversion formula to compute

Af(x) = A
[
F−1{f̂(ξ)}

]
=
∑
|α|≤m

aα(x)Dα

[
(2π)−n

∫
Rn
eix·ξ f̂(ξ) dξ

]

= (2π)−n
∫
Rn
eix·ξ

 ∑
|α|≤m

aα(x)ξα

 f̂(ξ) dξ

= (2π)−n
∫
Rn
eix·ξa(x, ξ)f̂(ξ) dξ.aux_differential_operator_formulaaux_differential_operator_formula (1.7)

where

a_differential_symbola_differential_symbol (1.8) a(x, ξ) :=
∑
|α|≤m

aα(x)ξα

is the (full) symbol of A = a(x,D).

The above example shows that any differential operator of order m has the
Fourier representation (1.7), where the symbol a(x, ξ) in (1.8) is a polynomial of
degree m in ξ. The following definition generalizes this setup.

Definition 1.35 (Pseudodifferential operators). For any m ∈ R, denote by
Sm (the set of symbols of order m) the set of all a ∈ C∞(Rn ×Rn) so that for any
multi-indices α, β ∈ Nn0 there is Cαβ > 0 such that

|∂αx ∂
β
ξ a(x, ξ)| ≤ Cαβ(1 + |ξ|)m−|β|, x, ξ ∈ Rn.

For any a ∈ Sm, define an operator A = Op(a) acting on functions f ∈ S (Rn) by

Af(x) = (2π)−n
∫
Rn
eix·ξa(x, ξ)f̂(ξ) dξ, x ∈ Rn.

Let Ψm = {Op(a) ; a ∈ Sm} be the set of pseudodifferential operators of order m.
We say that an operator Op(a) with a ∈ Sm is elliptic if there are c,R > 0 such
that

a(x, ξ) ≥ c(1 + |ξ|)m, x ∈ Rn, |ξ| ≥ R.

It is a basic fact that any A ∈ Ψm is a continuous map S (Rn)→ S (Rn), when
S (Rn) is given the natural topology induced by the seminorms f 7→ ‖xα∂βf‖L∞
where α, β ∈ Nn0 . By duality, any A ∈ Ψm gives a continuous map S ′(Rn) →
S ′(Rn), where S ′(Rn) is the weak∗ dual space of S (Rn) (the space of tempered
distributions). In particular, any A ∈ Ψm is well defined on E ′(Rn).

It is an important fact that applying a pseudodifferential operator to a function
or distribution never creates new singularities:



1.3. THE NORMAL OPERATOR AND SINGULARITIES 11

thm_psdo_microlocal_property Theorem 1.36 (Pseudolocal/microlocal property). Any A ∈ Ψm has the pseu-
dolocal property

sing supp(Au) ⊂ sing supp(u),

sing suppα−m(Au) ⊂ sing suppα(u)

and the microlocal property

WF (Au) ⊂WF (u),

WFα−m(Au) ⊂WFα(u).

Proof. We sketch the proof for the inclusion sing supp(Au) ⊂ sing supp(u).
For more details see [Hör85, Chapter 18]. Suppose that x0 /∈ sing supp(u), so we
need to show that x0 /∈ sing supp(Au). By definition, there is ψ ∈ C∞c (Rn) with
ψ = 1 near x0 so that ψu ∈ C∞c (Rn). We write

Au = A(ψu) +A((1− ψ)u).

Since A maps Schwartz space to itself, one always has A(ψu) ∈ C∞. Thus it is
enough to show that A((1− ψ)u) is C∞ near x0. To do this, choose ϕ ∈ C∞c (Rn)
so that ϕ = 1 near x0 and supp(ϕ) is contained in the set where ψ = 1. Define

Bu = ϕA((1− ψ)u).

It is enough to show that B is a smoothing operator, i.e. maps E ′(Rn) to C∞(Rn).
We compute the integral kernel of B:

Bu(x) = (2π)−nϕ(x)

∫
Rn
eix·ξa(x, ξ)((1− ψ)u)̂ (ξ) dξ

=

∫
Rn
K(x, y)u(y) dy

where

K(x, y) = (2π)−n
∫
Rn
ϕ(x)ei(x−y)·ξa(x, ξ)(1− ψ(y)) dξ.

Recall that a satisfies |a(x, ξ)| ≤ C(1 + |ξ|)m. Thus if m < −n, the integral is
absolutely convergent and one gets that K ∈ L∞(Rn×Rn). In the general case the
main point is that |x − y| ≥ c > 0 on the support of K(x, y), due to the support
conditions on ϕ and ψ. It follows that we may write, for any N ≥ 0,

ei(x−y)·ξ = |x− y|−2N (−∆ξ)
N (ei(x−y)·ξ)

and integrate by parts in ξ to obtain that

K(x, y) = (2π)−n|x− y|−2N

∫
Rn
ϕ(x)ei(x−y)·ξ((−∆ξ)

Na(x, ξ))(1− ψ(y)) dξ.

If N is chosen large enough (it is enough that m − 2N < −n − 1), one has
|(−∆ξ)

Na(x, ξ)| ≤ C(1 + |ξ|)−n−1. Thus the integral defining K(x, y) is abso-
lutely convergent, and in particular K ∈ L∞(Rn × Rn). Taking derivatives gives
that ∂αx ∂

β
yK is also bounded for any α and β, showing that K ∈ C∞(Rn ×Rn). It

follows from the next exercise that the operator B maps into C∞(Rn). �

Exercise 1.37. Show that an operator Bu(x) =
∫
Rn K(x, y)u(y) dy, where

K ∈ C∞(Rn × Rn), induces a well defined map from E ′(Rn) to C∞(Rn).
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We now go back to the normal operator R∗R and the proof of Theorem 1.32.
Theorem 1.24 states that R∗R has symbol 4π

|ξ| , which would be in the symbol class

S−1 except that the symbol is not smooth when ξ = 0. This can be dealt with in
the following standard way.

thm_normal_operator_psdo Theorem 1.38. The normal operator satisfies

R∗R = Q+ S

where Q ∈ Ψ−1 is elliptic, and S is a smoothing operator which maps E ′(R2) to
C∞(R2).

Proof. Let ψ ∈ C∞c (R2) satisfy ψ(ξ) = 1 for |ξ| ≤ 1/2 and ψ(ξ) = 0 for
|ξ| ≥ 1. Write

Qf = 4πF−1

{
1− ψ(ξ)

|ξ|
f̂

}
, Sf = 4πF−1

{
ψ(ξ)

|ξ|
f̂

}
.

Then Q is a pseudodifferential operator in Ψ−1 with symbol q(x, ξ) = 1−ψ(ξ)
|ξ| , hence

Q is elliptic. The operator S has the required property by Lemma 1.39 below since
ψ(ξ)
|ξ| is in L1

comp(R2) (the function ξ 7→ 1
|ξ| is locally integrable in R2). �

lemma_smoothing_elementary Lemma 1.39. If m ∈ L1
comp(Rn), then the operator

S : f 7→ F−1{m(ξ)f̂}

is smoothing in the sense that it maps E ′(Rn) to C∞(Rn).

Proof. If f ∈ E ′(Rn) then f̂ ∈ C∞(Rn). Consequently F (ξ) := m(ξ)f̂(ξ) is
in L1(Rn) by the assumption on m. Moreover, F is compactly supported, which
implies that Sf = F−1F is C∞. �

We can finally prove the recovery of singularities result.

Proof of Theorem 1.32. We prove the claim for the singular support (the
other parts are analogous). By Theorem 1.38, one has

R∗Rf = Qf + C∞.

Hence it is enough to show that sing supp(Qf) = sing supp(f). It follows from
Theorem 1.36 that sing supp(Qf) ⊂ sing supp(f). The converse inclusion is a stan-
dard argument, which follows from the construction of an approximate inverse, or
parametrix, for the elliptic pseudodifferential operator Q. Define

Ef = F−1
{

(1− χ(ξ))|ξ|f̂
}

where χ ∈ C∞c (R2) satisfies χ(ξ) = 1 for |ξ| ≤ 2. Note that E ∈ Ψ1. Since ψ(ξ) = 0
for |ξ| ≥ 1, it follows that

EQf = F−1

{
(1− χ(ξ))|ξ|1− ψ(ξ)

|ξ|
f̂

}
= f −F−1

{
χ(ξ)f̂

}
.

Thus EQf = f + S1f , where S1 is smoothing and maps E ′(R2) to C∞(R2) by
Lemma 1.39. Hence Theorem 1.36 applied to E gives that

sing supp(f) = sing supp(EQf) ⊂ sing supp(Qf). �
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1.3.4. Visible singularities. We conclude with a short discussion on more
precise recovery of singularities results from limited X-ray data. This follows the
microlocal approach to Radon transforms introduced in [Gui75]. For more detailed
treatments we refer to the survey articles [Qui06], [KQ15].

There are various imaging situations where complete X-ray data (i.e. the func-
tion Rf(s, ω) for all s and ω) is not available. This is the case for limited angle
tomography (e.g. in luggage scanners at airports, or dental applications), region of
interest tomography, or exterior data tomography. In such cases explicit inversion
formulas such as FBP are usually not available, but the analysis of singularities still
provides a powerful paradigm for predicting which sharp features can be recovered
stably from the measurements.

We will try to explain this paradigm a little bit more, starting with an example:

Example 1.40. Let f be the characteristic function of the unit disc D, i.e.
f(x) = 1 if |x| ≤ 1 and f(x) = 0 for |x| > 1. Then f is singular precisely on the
unit circle (in normal directions). We have

Rf(s, ω) =

{
2
√

1− s2, |s| ≤ 1,

0, |s| > 1.

Thus Rf is singular precisely at those points (s, ω) with |s| = 1, which correspond
to those lines that are tangent to the unit circle.

There is a similar relation between the singularities of f and Rf in general,
and this is explained by microlocal analysis and the interpretation of R as a Fourier
integral operator (see [Hör85, Chapter 25]):

Theorem 1.41. The operator R is an elliptic Fourier integral operator of order
−1/2. There is a precise relationship between the singularities of f and singularities
of Rf .

We will not spell out the precise relationship here, but only give some conse-
quences. It will be useful to think of the Radon transform as defined on the set of
(non-oriented) lines in R2. If A is an open subset of lines in R2, we consider the
Radon transform Rf |A restricted to lines in A. Recovering f (or some properties
of f) from Rf |A is a limited data tomography problem. Examples:

• If A = {lines not meeting D}, then Rf |A is called exterior data.
• If 0 < a < π/2 and A = {lines whose angle with x-axis is < a} then Rf |A

is called limited angle data.

It is known that any f ∈ C∞c (R2 \ D) is uniquely determined by exterior
data (Helgason support theorem), and any f ∈ C∞c (R2) is uniquely determined
by limited angle data (Fourier slice and Paley-Wiener theorems). However, both
inverse problems are very unstable (inversion is not Lipschitz continuous in any
Sobolev norms, but one has conditional logarithmic stability).

Definition 1.42. A singularity at (x0, ξ0) is called visible from A if the line
through x0 in direction ξ⊥0 is in A.

One has the following dichotomy:

• If (x0, ξ0) is visible from A, then from the singularities of Rf |A one can
determine for any α whether or not (x0, ξ0) ∈WFα(f). If Rf |A uniquely
determines f , one expects the reconstruction of visible singularities to be
stable.
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• If (x0, ξ0) is not visible from A, then this singularity is smoothed out in
the measurement Rf |A. Even if Rf |A would determine f uniquely, the
inversion is not Lipschitz stable in any Sobolev norms.



CHAPTER 2

Radial sound speeds

In this chapter we will discuss geometric inverse problems in a disk with radial
sound speed. The fact that the sound speed is radial is a strong symmetry condition,
which allows one to determine the geodesics and solve related inverse problems quite
explicitly.

2.1. Geodesics

The fact that the geodesics of a radial sound speed can be explicitly determined
is related to the existence of multiple conserved quantities in the Hamiltonian ap-
proach to geodesics. We first recall this approach.

2.1.1. Geodesics as a Hamilton flow. Let M ⊂ Rn, let x be standard
Cartesian coordinates, and let g = (gjk(x))nj,k=1 be a Riemannian metric on M . A

curve x(t) is a geodesic iff it satisfies the geodesic equations

geodesic_equations_firstgeodesic_equations_first (2.1) ẍl(t) + Γljk(x(t))ẋj(t)ẋk(t) = 0,

where Γljk are the Christoffel symbols given by

Γljk =
1

2
glm(∂jgkm + ∂kgjm − ∂mgjk).

Writing

ξj(t) := gjk(x(t))ẋk(t), f(x, ξ) :=
1

2
gjk(x)ξjξk,

a short computation shows that the geodesic equations are equivalent with the
Hamilton equations

geodesic_equations_secondgeodesic_equations_second (2.2)

{
ẋ(t) = ∇ξf(x(t), ξ(t)),

ξ̇(t) = −∇xf(x(t), ξ(t)).

Here f(x, ξ) (kinetic energy) is called the Hamilton function, and it is defined on
the cotangent space T ∗M = {(x, ξ) ; x ∈M, ξ ∈ Rn} = M × Rn.

Exercise 2.1. Show that (2.1) is equivalent with (2.2).

Writing γ(t) = (x(t), ξ(t)) and using the Hamilton vector field Hf on T ∗M ,
defined by

Hf := ∇ξf · ∇x −∇xf · ∇ξ = (∇ξf,−∇xf)

we may write the Hamilton equations as

γ̇(t) = Hf (γ(t)).

Definition 2.2. A function u = u(x, ξ) is a conserved quantity if it is constant
along the Hamilton flow, i.e. t 7→ u(x(t), ξ(t)) is constant for any curve (x(t), ξ(t))
solving (2.2).

15
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Now (2.2) implies that

u is conserved ⇐⇒ d

dt
u(x(t), ξ(t)) = 0 ⇐⇒ Hfu(x(t), ξ(t)) = 0.

Since

Hff = (∇ξf,−∇xf) · (∇xf,∇ξf) = 0,

the Hamilton function f (kinetic energy) is always conserved.
Let now M ⊂ R2, and consider a metric of the form

gjk(x) = c(x)δjk

where c ∈ C∞(M) is positive. Then f(x, ξ) = 1
2c(x)|ξ|2 and

Hf = c(x)ξ · ∇x −
1

2
|ξ|2∇xc(x) · ∇ξ.

Define the angular momentum

L(x, ξ) = ξ · x⊥, x⊥ = (−x2, x1).

When is L conserved? We compute

HfL = c(x)ξ · (−ξ⊥)− 1

2
|ξ|2∇xc(x) · x⊥ = −1

2
|ξ|2∇xc(x) · x⊥.

Thus HfL = 0 iff ∇c(x) · x⊥ = 0, which is equivalent with the fact that c is radial:

lemma_angular_momentum Lemma 2.3. The angular momentum L is conserved iff

c = c(r), r = |x|.

If M ⊂ R2 and c(x) is radial, then the Hamilton flow has two independent
conserved quantities (the kinetic energy f and angular momentum L). One says
that the flow is completely integrable, which implies that the geodesic equations can
be solved quite explicitly by quadrature using f and h. See e.g. [Tay11, Chapter
1] for more details on these facts.

2.1.2. Geodesics of a radial sound speed. We will now begin to analyze
geodesics in this setting. Let M = D \ {0} where D is the unit disk in R2. Assume
that

gjk(x) = c(r)δjk, r = |x|,
where c ∈ C∞((0, 1]). Note that the origin is a special point and gjk(x) is not
necessarily smooth there, hence we will consider geodesics only away from the
origin.

We write

r(t) = |x(t)|, x̂ =
x

|x|
.

The Hamilton equations (2.2) become

geodesic_equations_thirdgeodesic_equations_third (2.3)

{
ẋ(t) = c(r(t))ξ(t),

ξ̇(t) = − 1
2 |ξ(t)|

2c′(r(t))x̂(t).

Decompose ξ = (ξ · x̂)x̂+ (ξ · x̂⊥)x̂⊥. Computing the derivative of r(t) gives

ṙ =
x · ẋ
|x|

= c(ξ · x̂) = ±c
√
|ξ|2 − (ξ · x̂⊥)2, ±ξ · x̂ ≥ 0.
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Consider geodesics starting on ∂D, i.e. r(0) = 1, and let also |ξ(0)| = 1. Now

f conserved =⇒ c(r)|ξ|2 = c(1) =⇒ |ξ|2 =
c(1)

c(r)
,

L conserved =⇒ ξ · x⊥ = ξ(0) · x(0)⊥.

We write
ξ(0) = −

√
1− p2x(0) + px(0)⊥, 0 < p < 1.

Note that ξ(0) points inward. Noting that
√
|ξ|2 − (ξ · x̂⊥) =

√
c(1)
c(r) −

p
r , we see

that r(t) solves the equation

(2.4) ṙ = ±
√
c(r)(c(1)− pc(r)).

This is an autonomous ODE for r(t) (all other dependence on t has been eliminated).





CHAPTER 3

Geometric Preliminaries

chapter:geoprelim

3.1. Non-trapping and Strict Convexity

Let (M, g) be a compact, connected and oriented Riemannian manifold with
boundary ∂M and dimension n ≥ 2.

Geodesics travel at constant speed, so we fix the speed to be one. We pack
positions and velocities together in what we call the unit sphere bundle SM . This
consists of pairs (x, v), where x ∈ M and v ∈ TxM with norm |v|g = 1, where
g is the inner product in the tangent space at x (i.e. the Riemannian metric).
Given (x, v) ∈ SM , let γx,v denote the unique geodesic determined by (x, v) and
let τ(x, v) ∈ [0,∞] denote the first forward time where the geodesic γx,v hits ∂M .

Definition 3.1. We say that (M, g) is non-trapping if τ(x, v) < ∞ for all
(x, v) ∈ SM . Equivalently, there are no geodesics in M with infinite length.

Unit tangent vectors at the boundary of M constitute the boundary ∂SM of
SM and will play a special role. Specifically

∂SM := {(x, v) ∈ SM : x ∈ ∂M}.
We will need to distinguish those tangent vectors pointing inside (“influx bound-
ary”) and those pointing outside (“outflux boundary”), so we define two subsets of
∂SM

∂±SM := {(x, v) ∈ ∂SM : ±〈v, ν(x)〉g ≥ 0}
where ν denotes the inward unit normal to the boundary.

G: convention, inward unit normal. Makes volume form dµ and other things a
bit more natural

Let us denote

∂0SM := ∂+SM ∩ ∂−SM.

This coincides with S∂M .
Recall that the second fundamental form of ∂M is given by

Πx(u, v) := −〈∇uν, v〉g,
where x ∈ ∂M and u, v ∈ Tx∂M (∇ is the Levi-Civita connection of g).

Definition 3.2. We shall say that ∂M is strictly convex if Πx is positive definite
for all x ∈ ∂M .

The combination of non-trapping with strict convexity of the boundary will
produce several desirable properties. We will begin discussing the regularity of the
fundamental function τ . Note that by definition τ |∂−SM = 0.

Let ρ ∈ C∞(M) be a function that coincides with M 3 x 7→ d(x, ∂M) in a
neighbourhood of ∂M and such that ρ ≥ 0 and ∂M = ρ−1(0).

19
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Exercise 3.3. Show that such a function exists. Moreover, show that ∇ρ(x) =
ν(x) for all x ∈ ∂M .

3.1.1. Extensions. It turns out that it is quite convenient to consider (M, g)
isometrically embedded into a complete connected boundaryless manifold (N, g) of
the same dimension as M . There are two extensions which are particularly helpful.

(1) (N, g) is closed; this extension always exists for any compact (M, g).
(2) (N, g) is complete and geodesics leaving M never return to M . Moreover

M is a deformation retract of N . This extension exists if ∂M is strictly
convex. We shall refer this extension as the no return extension.

Exercise 3.4. Prove that these two extensions exist.

G: I learned about the no return extension from Jan Bohr, who also wrote a
proof of its existence in his first year research project.

Given a complete extension (N, g) we may extend ρ smoothly to N and define
a function h : SN × R→ R by setting h(x, v, t) := ρ(γx,v(t)). Then

∂h

∂t
(x, v, t) = dρ(γ̇x,v(t)) = 〈∇ρ(γx,v(t)), γ̇x,v(t))〉.

Set y := γx,v(τ(x, v)) ∈ ∂M for (x, v) ∈ SM . Since ∇ρ agrees with ν on ∂M , we
see that

∂h

∂t

∣∣∣∣
t=τ(x,v)

h(x, v, t) 6= 0

as long as γx,v is transversal to ∂M at y. Since h(x, v, τ(x, v)) = 0 and h is smooth,
the implicit function theorem ensures that τ is smooth for those (x, v) ∈ SM such
that γx,v is transversal to ∂M at y (here it is useful to use an extension (N, g) so
that geodesics do not return to M after leaving, why?). Hence, by strict convexity,
τ is smooth on SM \ ∂0SM .

Exercise 3.5. Show that τ is not smooth at the glancing region ∂0SM .

Lemma 3.6. Let (M, g) be a non-trapping manifold with strictly convex bound-
ary and let

τ̃(x, v) :=

{
τ(x, v), (x, v) ∈ ∂+SM,
−τ(x,−v), (x, v) ∈ ∂−SM.

Then τ̃ ∈ C∞(∂SM); in particular τ : ∂+SM → R is smooth.lemma:tautilde

Proof. As before we let h(x, v, t) := ρ(γx,v(t)) for (x, v) ∈ ∂SM and t ∈ R.
Note

• h(x, v, 0) = 0;
• ∂

∂t

∣∣
t=0

h(x, v, t) = 〈ν(x), v〉;
• ∂2

∂t2

∣∣∣
t=0

h(x, v, t) = Hessxρ(v, v).

Hence for a smooth function R(x, v, t) we can write

h(x, v, t) = 〈ν(x), v〉t+
1

2
Hessxρ(v, v)t2 +R(x, v, t)t3.

Since h(x, v, τ̃(x, v)) = 0, it follows that

eq:tautildeeq:tautilde (3.1) 〈ν(x), v〉+
1

2
Hessxρ(v, v)τ̃ +R(x, v, τ̃)τ̃2 = 0.
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Note that τ̃(x, v) = 0 iff (x, v) ∈ ∂0SM . Hence if we let

F (x, v, t) := 〈ν(x), v〉+
1

2
Hessxρ(v, v)t+R(x, v, t)t2

we see that F is smooth, F (x, v, τ̃(x, v)) = 0 and

∂

∂t

∣∣∣∣
t=0

F (x, v, t) =
1

2
Hessxρ(v, v).

But for (x, v) ∈ ∂0SM , Hessxρ(v, v) = −Πx(v, v) < 0 and thus by the implicit
function theorem, τ̃ is smooth in a neighbourhood of ∂0SM . Since τ̃ is smooth in
∂SM \ ∂0SM the lemma follows.

�

Exercise 3.7. Check that for (x, v) ∈ ∂0SM , Hessxρ(v, v) = −Πx(v, v). Show
that if ∂M is strictly convex then any geodesic in N starting from a point x ∈ ∂M
in a direction tangent to ∂M stays outside M for small positive and negative times.
This implies that any maximal geodesic going from ∂M into M stays inside M
except for its endpoints.

G: Maybe we should prove this exercise and make it part of the text a bit ear-
lier?

Let µ(x, v) := 〈ν(x), v〉 for (x, v) ∈ ∂SM .

Lemma 3.8. Let (M, g) be a non-trapping manifold with strictly convex bound-
ary. The function µ/τ̃ extends to a smooth positive function on ∂SM whose value
at (x, v) ∈ ∂0SM is

Πx(v, v)

2
.

lemma:tauextension

Proof. Using (3.1) we can write

µ(x, v) = −1

2
Hessxρ(v, v)τ̃ −R(x, v, τ̃)τ̃2

and hence for (x, v) ∈ ∂SM \ ∂0SM near ∂0SM we can write

µ/τ̃ = −1

2
Hessxρ(v, v)−R(x, v, τ̃)τ̃ .

But the right hand side of the last equation is a smooth function near ∂0SM
since R and τ̃ are; its value at (x, v) ∈ ∂0SM is Πx(v, v)/2. Finally, observe
that µ and τ̃ are both positive for (x, v) ∈ ∂+SM \ ∂0SM and both negative for
(x, v) ∈ ∂−SM \ ∂0SM .

�

Remark 3.9. Note that we can define τ̃ on all SM by setting τ̃(x, v) :=
τ(x, v) − τ(x,−v). The restriction of this function to ∂SM coincides with the
definition of τ̃ given by Lemma 3.6. It turns out that in fact τ̃ ∈ C∞(SM); see
Lemma 3.12 below.remark:tautilde

The next lemma will be very helpful when studying regularity properties of
solutions to transport equations.
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lemma_tau_glancing_square_root Lemma 3.10. Let (M, g) be compact with smooth boundary, let (x0, v0) ∈ ∂0SM ,
and let ∂M be strictly convex near x0. Assume that M is embedded in a compact
manifold N without boundary. Then, near (x0, v0) in SM , one has

τ(x, v) = Q(
√
a(x, v), x, v),

−τ(x,−v) = Q(−
√
a(x, v), x, v),

where Q is a smooth function near (0, x0, v0) in R × SN , a is a smooth function
near (x0, v0) in SN , and a ≥ 0 in SM .

Proof. This follows directly by applying Lemma 3.11 below to h(t, x, v) =
ρ(γx,v(t)) near (0, x0, v0), where ρ is a boundary defining function for M . �

lemma_h_square_root Lemma 3.11. Let h(t, y) be smooth near (0, y0) in R× RN . If

h(0, y0) = 0, ∂th(0, y0) = 0, ∂2
t h(0, y0) < 0,

then one has

h(t, y) = 0 near (0, y0) when h(0, y) ≥ 0 ⇐⇒ t = Q(±
√
a(y), y)

where Q is a smooth function near (0, y0) in R× RN , a is a smooth function near

y0 in RN , and a(y) ≥ 0 when h(0, y) ≥ 0. Moreover, Q(
√
a(y), y) ≥ Q(−

√
a(y), y)

when h(0, y) ≥ 0.

Proof. We use the same argument as in [Hör85, Theorem C.4.2]. Using that
∂2
t h(0, y0) < 0, the implicit function theorem gives that

∂th(t, y) = 0 near (0, y0) ⇐⇒ t = g(y)

where g is smooth near y0 and g(y0) = 0. Write

h1(s, y) := h(s+ g(y), y).

Then ∂sh1(0, y) = 0 and ∂2
sh1(0, y0) < 0. Thus by the Taylor formula we have

h1(s, y) = h1(0, y)− s2F (s, y)

where F is smooth near (0, y0) and F (0, y0) > 0. We define

r(s, y) := sF (s, y)1/2

and note that r(0, y0) = 0, ∂sr(0, y0) > 0. Thus the map (s, y) 7→ (r(s, y), y) is a
local diffeomorphism near (0, y0), and there is a smooth function S near (0, y0) so
that

r(s, y) = r̄ ⇐⇒ s = S(r̄, y).

Moreover, ∂rS(0, y0) > 0. Define the function

h2(r, y) := h1(0, y)− r2.

Now

h(t, y) = h1(t− g(y), y) = h1(0, y)− (t− g(y))2F (t− g(y), y)

= h2(r(t− g(y), y), y).

Thus h(t, y) = 0 is equivalent with

r_gy_equationr_gy_equation (3.2) r(t− g(y), y)2 = h1(0, y) = h(g(y), y).
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We claim that

h_gy_y_nonnegativeh_gy_y_nonnegative (3.3) h(g(y), y) ≥ 0 near y0 when h(0, y) ≥ 0.

If (3.3) holds, then we may solve (3.2) to obtain

h(t, y) = 0 near (0, y0) when h(0, y) ≥ 0 ⇐⇒ r(t− g(y), y) = ±
√
h(g(y), y).

The last condition is equivalent with

t− g(y) = S(±
√
h(g(y), y), y).

This proves the lemma upon taking Q(r, y) = g(y) + S(r, y) and a(y) = h(g(y), y)
(note that r 7→ Q(r, y) is increasing since ∂rS(0, y0) > 0). To prove (3.3), we use
the Taylor formula

h(g(y) + s, y) = h(g(y), y) + ∂th(g(y), y)s+G(s, y)s2

where G(0, y0) < 0. Choosing s = −g(y) and using that ∂th(g(y), y) = 0 shows
that h(g(y), y) ≥ h(0, y) near y = y0, and thus (3.3) indeed holds. �

Lemma 3.12. Let (M, g) be a non-trapping manifold with strictly convex bound-
ary. Then the functions

τ̃(x, v) := τ(x, v)− τ(x,−v), and T (x, v) := τ(x, v)τ(x− v)

are smooth in SM .lemma:tauT

Proof. Given the properties of τ we just have to prove smoothness near a
glancing point (x0, v0) ∈ ∂0SM . By Lemma 3.10 given (x, v) ∈ SM near (x0, v0) ∈
∂0SM we have:

τ̃(x, v) = Q(
√
a(x, v), x, v) +Q(−

√
a(x, v), x, v).

Since we can write H(r2, x, v) = Q(r, x, v) + Q(−r, x, v), where H is smooth near
(0, x0, v0), we deduce that

τ̃(x, v) = H(a(x, v), x, v)

thus showing smoothness of τ̃ . The statement for T follows by taking products,
rather than sums.

�

Remark 3.13. Using this lemma, it is possible to write the functions Q and
a from Lemma 3.10 in terms of τ̃ and T . Indeed, since τ satisfies the quadratic
equation

τ(τ − τ̃) = T

we have

τ =
τ̃ +
√
τ̃2 + 4T

2

with τ̃ , T ∈ C∞(SM). Thus Q(t, x, v) = (τ̃(x, v) + t)/2 and a = τ̃2 + 4T .
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3.2. The geodesic flow and the scattering relation

Let (M, g) be a compact, connected and oriented Riemannian manifold with
boundary ∂M and dimension n ≥ 2. Without loss of generality we may assume
that (M, g) is isometrically embedded into a closed manifold (N, g) of the same
dimension.

The geodesics of (N, g) are defined for all times in R. We pack them into what
is called the geodesic flow. For each t ∈ R this is a diffeomorphism

ϕt : SN → SN

defined by
ϕt(x, v) := (γx,v(t), γ̇x,v(t)).

This is a flow, i.e. ϕt+s = ϕt ◦ ϕs for all s, t ∈ R. The flow has an infinitesimal
generator called the geodesic vector field and denoted by X. This is a smooth
section of TSN that can be regarded as the first order differential operator X :
C∞(SN)→ C∞(SN) given by

(Xu)(x, v) :=
d

dt

∣∣∣∣
t=0

u(ϕt(x, v)),

where u ∈ C∞(SN). Observe that X : C∞(SM) → C∞(SM). The non-trapping
property can be characterized using the operator X as follows:

Proposition 3.14. Let (M, g) be a compact manifold with strictly convex
boundary. The following are equivalent:

(1) (M, g) is non-trapping;
(2) X : C∞(SM)→ C∞(SM) is surjective;
(3) there is f ∈ C∞(SM) such that Xf > 0.

prop:dh

Proof. By Exercise 3.16 below f = −τ̃ is smooth and satisfies Xf > 0, thus
(1) =⇒ (3). Clearly (3) =⇒ (1): if there is a geodesic in M with infinite length,
since Xf > c > 0, integrating along it we would find f(ϕt(x, v)) − f(x, v) > tc
for all t > 0 which is absurd since f is bounded. The implication (2) =⇒ (3) is
obvious, so it remains to prove that (1) =⇒ (2).

Consider (M, g) embedded in a closed manifold (N, g). Since strict convexity
and Xf > 0 are open conditions there is a slightly larger compact manifold M0 with
M ⊂M int

0 ⊂ N and such that ∂M0 is strictly convex and (M0, g) is non-trapping.
Let τ0 denote the exit time of M0 and given h ∈ C∞(SM) extend it smoothly to
SM0. For (x, v) ∈ SM , set

u(x, v) := −
∫ τ0(x,v)

0

h(ϕt(x, v)) dt.

Since τ0|SM is smooth, u ∈ C∞(SM). A calculation shows that Xu = h and thus
X : C∞(SM)→ C∞(SM) is surjective.

�

Remark 3.15. The assumption of ∂M being strictly convex is not necessary,
see [DH72, Theorem 6.4.1] for a proof of the same result for arbitrary vector fields.

Exercise 3.16. Let (M, g) be a non-trapping manifold with strictly convex
boundary. Show that

Xτ̃ = −2,
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where τ̃ is the function from Remark 3.9.xca:tautilde

Definition 3.17. Let (M, g) be a non-trapping manifold with strictly convex
boundary. We define the scattering relation as the map α : ∂SM → ∂SM given by

α(x, v) := ϕτ̃(x,v)(x, v).

By Lemma 3.6, the map α is smooth. By definition of τ̃ we see that α :
∂+SM → ∂−SM and α : ∂−SM → ∂+SM . Moreover, α is an involution:

Exercise 3.18. Prove that τ̃ ◦ α = −τ̃ . Deduce that α2 = Id and conclude
that α is a diffeomorphism whose fixed point set is ∂0SM .

3.2.1. The geodesic vector field and strict convexity. In this subsection
we would like to understand how the strict convexity of ∂M reflects at level of the
geodesic vector field and the unit tangent bundle.

Let (M, g) be a compact Riemannian manifold with unit sphere bundle π :
SM → M . For details of what follows see for example [Kni02, Pat99]. It is well
known that SM carries a canonical metric called the Sasaki metric. If we let V
denote the vertical subbundle given by V = Ker dπ, then there is an orthogonal
splitting with respect to the Sasaki metric:

TSM = RX ⊕H⊕ V.

The subbundle H is called the horizontal subbundle. Elements in H(x, v) and
V(x, v) are canonically identified with elements in the codimension one subspace
{v}⊥ ⊂ TxM . A vector in RX ⊕H is canonically identified with the whole TxM .
The identifications are described as follows. Given ξ ∈ T(x,v)SM , write it as ξ =
(ξH , ξV ), where ξH ∈ RX ⊕ H and ξV ∈ V. Then ξH = dπ(ξ) and ξV = Kξ,
where K is the connection map. Consider any curve Z : (−ε, ε) → SM such that

Z(0) = (x, v) and Ż(0) = ξ and write Z(t) = (α(t),W (t)). Then

Kξ :=
DW

dt

∣∣∣∣
t=0

,

where D stands for the covariant derivative of the vector field W along α given by
the Levi-Civita connection. In this splitting, the geodesic vector field has a very
simple form

eq:Xeq:X (3.4) X(x, v) = (v, 0).

Using the splitting, one can also define the Sasaki metric G of SM as

〈ξ, η〉G := 〈ξH , ηH〉g + 〈ξV , ηV 〉g.

The next lemma identifies the tangent spaces to ∂SM and S∂M = ∂0SM using
this splitting.

Lemma 3.19.

T(x,v)∂SM = {(ξH , ξV ) : ξH ∈ Tx∂M, ξV ∈ {v}⊥};

T(x,v)∂0SM = {(ξH , ξV ) : ξH ∈ Tx∂M, ξV ∈ {v}⊥, 〈ξV , ν(x)〉 −Πx(v, ξH) = 0}.

lemma:tangent
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Proof. To prove the first statement consider a curve Z : (−ε, ε) → ∂SM

with Z(0) = (x, v) and ξ = Ż(0). Then if we write Z(t) = (α(t),W (t)) with
α : (−ε, ε) → ∂M , we see that ξH = dπ(ξ) = α̇(0) ∈ Tx∂M . Differentiating
〈W (t),W (t)〉 = 1 at t = 0 we get that 〈ξV , v〉 = 0 and counting dimensions the first
statement follows.

To prove the second statement we need to take a curve Z : (−ε, ε) → ∂0SM
which gives the additional equation 〈W (t), ν(α(t))〉 = 0. Differentiate this at t = 0,
to get using the definition of the connection map K:

〈ξV , ν(x)〉+ 〈v,∇ξHν〉 = 0.

This is equivalent to 〈ξV , ν(x)〉 −Πx(v, ξH) = 0 and the result follows.
�

When does X fail to be transversal to ∂SM? Using Lemma 3.19 and (3.4)
we see that this happens iff (x, v) ∈ ∂0SM . In addition, the characterization of
T(x,v)∂0SM , tell us that X is always transversal to ∂0SM under the assumption
that the boundary ∂M is strictly convex.

We summarize this in the following lemma:

Lemma 3.20. The geodesic vector field X is transverse to ∂SM \ ∂0SM . If
∂M is strictly convex, then X is transversal to ∂0SM . We always have X(x, v) ∈
T(x,v)∂SM for (x, v) ∈ ∂0SM .lemma:summary

The picture described by the lemma will be helpful later on when discussing
regularity results for the transport equation.

Exercise 3.21. Show that the horizontal vector (ν(x), 0) is a unit normal
vector to ∂SM in the Sasaki metric. Moreover, show that the inner product of this
vector with X is precisely the function µ introduced before.

3.3. The unit circle bundle of a surface

Consider now the case dimM = 2. In this instance there is a very convenient
frame of TSM that will be used throughout this book.

Since M is assumed oriented there is a circle action on the fibers of SM with
infinitesimal generator V called the vertical vector field. It is possible to complete
the pair X,V to a global frame of T (SM) by considering the vector field X⊥ defined
as the commutator

eq:XVeq:XV (3.5) X⊥ := [X,V ].

There are two additional structure equations given by

eq:VXperpeq:VXperp (3.6) X = [V,X⊥],

and

eq:XXperpeq:XXperp (3.7) [X,X⊥] = −KV,

where K is the Gaussian curvature of the surface. Using this frame we can define
a Riemannian metric on SM by declaring {X,X⊥, V } to be an orthonormal basis.

Exercise 3.22. Show that this metric coincides with the Sasaki metric G on
SM defined above.
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The volume form of the metric G will be denoted by dΣ3. The fact that
{X,X⊥, V } are orthonormal together with the commutator formulas implies that
the Lie derivative of dΣ3 along the three vector fields vanishes, in other words, the
three vector fields preserve the volume form dΣ3.

Exercise 3.23. Show that each element in the frame {X,X⊥, V } preserves
dΣ3.

See [ST76] for more details on these facts.

G: We can easily expand and complement this part adding material from my
notes with Will.

It will be useful to have explicit forms of the three vector fields in local coordi-
nates. Since (M, g) is two dimensional, we can always choose isothermal coordinates
(x1, x2) so that the metric can be written as ds2 = e2λ(dx2

1 + dx2
2) where λ is a

smooth real-valued function of x = (x1, x2). This gives coordinates (x1, x2, θ) on
SM where θ is the angle between a unit vector v and ∂/∂x1. In these coordinates
the vertical vector field is just

V =
∂

∂θ
,

and the other vector fields are given by

eq:eqXeq:eqX (3.8) X = e−λ
(

cos θ
∂

∂x1
+ sin θ

∂

∂x2
+

(
− ∂λ

∂x1
sin θ +

∂λ

∂x2
cos θ

)
∂

∂θ

)
,

eq:Xperpeq:Xperp (3.9) X⊥ = −e−λ
(
− sin θ

∂

∂x1
+ cos θ

∂

∂x2
−
(
∂λ

∂x1
cos θ +

∂λ

∂x2
sin θ

)
∂

∂θ

)
.

G: Motto: try not to leave the unit sphere bundle SM if you can! It is the nat-
ural habitat where everything takes place. This is similar to other people’s
mottos; for instance András will say “do not project to M and stay in phase
space”. Michel Herman told me something similar but more amusing in 97:
“Riemannian geometers get a bit confused with some of this stuff since they
are not used to working in phase space”.

G: We should give a reference for isothermal coordinates and mention that non-
trapping surfaces with strictly convex boundary are diffeomorphic to discs and
hence admit global isothermal coordinates.

3.3.1. Herglotz condition and rotationally symmetric cases. TODO.
Include the fact that a rotationally symmetric surface is non-trapping iff it satisfies
the Herglotz condition.

3.3.2. Additional facts.

Proposition 3.24. Let (M, g) be a 2D disc with strictly convex boundary.
Suppose τ(x, v) <∞ for all (x, v) ∈ ∂+SM . Then (M, g) is non-trapping.

Sketch. Run the mean curvature flow inwards starting from the boundary.
We know that two things can happen: either it converges to a simple closed geodesic
or it produces a strictly convex function. In the latter case (M, g) is non-trapping,
so let us assume we have a closed geodesic at the end of the flow. Hence we have
produced an annulus A where one boundary component is ∂M and the other is the
closed geodesic γ. The annulus admits a function f that is strictly convex except
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at γ. Now consider the universal cover of A; this is a strip bounded by the lifts of

∂M and γ. Let us denote those lifts by ∂̃M and γ̃. Consider a sequence of points

pn ∈ γ̃ with pn →∞ and fix x ∈ ∂̃M . The geometry of the strip is so that for each
n there is a minimizing unit speed geodesic σn connecting x to pn. By compactness

and strict convexity of the boundary the unit vectors σ̇n(0) ∈ ∂+SÃ must converge

to a unit vector w ∈ TxÃ pointing strictly inside Ã. But τ(x,w) =∞ contradicting
the assumption that τ(x, v) <∞ for every (x, v) ∈ ∂+SM .

�

3.4. Morse Theory approach

The classical Morse theory of the energy functional on loop spaces provides
several relevant results. These results are pretty standard on complete manifolds
without boundary or closed manifolds. Given a compact manifold (M, g) with
strictly convex boundary, throughout this subsection, (N, g) is a no return exten-
sion. Recall that this is a complete extension of (M, g) with the property that
geodesics leaving M do not return to M . Moreover, since N \M can be taken as
to be diffeomorphic to (0,∞)× ∂M , M is a deformation retract of N .

G: all these results are proved with the same tools. It makes sense to pack
them in one section and then use them as needed. This should make the 10+
section a bit easier.

Proposition 3.25. Let (M, g) be a compact Riemannian manifold with strictly
convex boundary. Then given given two points x, y ∈ M there is a minimizing
geodesic in M connecting x to y.prop:HR

Proof. Since (N, g) is complete, the Hopf-Rinow theorem ensures that there
is a minimizing geodesic γ in N connecting x and y. Since x, y ∈M and geodesics
leaving M do not return to M we must have that γ is a geodesic entirely contained
in M .

�

Proposition 3.26. Let (M, g) be a non-trapping manifold with strictly convex
boundary. Then M is contractible.prop:contractible

Proof. Since M is a deformation retract of N , it follows that M is contractible
iff N is. A classical result of Serre [Ser51] (proved using Morse theory) asserts
that if x and y are not conjugate and if N is not contractible, there are geodesics
connecting x to y with arbitrarily large length. Since N is a no return extension,
if we pick x and y in M , then M itself admits geodesics of arbitrarily large length
connecting x to y thus violating the non-trapping property. Note that by Sard’s
theorem if we fix x almost every y ∈ N is not conjugate to x. It follows that M is
contractible.

�

Remark 3.27. The proposition also follows from another well-known fact in
Riemannian geometry: a compact connected and non-contractible Riemannian
manifold with strictly convex boundary must have a closed geodesic in its inte-
rior [Tay11, Theorem 4.2]. This is also proved with Morse theory, but using the
space of free loops.
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Proposition 3.28. Let (M, g) be a compact Riemannian manifold without
conjugate points and with strictly convex boundary. Let γ be a geodesic with
endpoints x, y ∈ M . If α is any other smooth curve in M connecting x to y that
is homotopic to γ with a homotopy fixing the end points, then the length of α is
larger than the length of γ. In other words, there is a unique geodesic connecting
x to y in a given homotopy class and this geodesic must be minimizing.prop:homotopy

Proof. We follow [GM18, Lemma 2.2] where this very same proposition is
proved. We let Ω(x, y) denote the Hilbert manifold of absolutely continuous curves
c : [0, 1]→ N with c(0) = x, c(1) = y and finite energy

E(c) :=
1

2

∫ 1

0

|ċ|2 dt.

It is well known that E : Ω(x, y)→ R is C2 and satisfies the Palais-Smale condition. G: check smooth-
ness claim and
give reference

G: check smooth-
ness claim and
give reference

The critical points of E are precisely the geodesics connecting x to y. Moreover,
since there are no conjugate points, the Morse index theorem [Mil63] guarantees
that the Hessian of E at a critical point is positive definite (recall that N is a no
return extension, so it suffices to assume that M has no conjugate points). Thus
all critical points of E are local minimizers of E and are isolated. We now argue
with E restricted to the connected component of Ω(x, y) containing γ, which we
denote by Ω[γ](x, y). This coincides with the set of paths connecting x to y and
homotopic to γ. We claim that γ is the unique minimizer of E|Ω[γ](x,y). Indeed a
mountain pass argument, shows that if this is not the case, then there is a geodesic
σ ∈ Ω[γ](x, y) that is not a local minimum of E|Ω[γ](x,y) (cf. [Str96, Theorem 10.3]

and [Hof85]). Again by the Morse index theorem σ must contain conjugate points,
and since it must be entirely contained in M we get a contradiction.

�

3.5. 10+ Definitions of simple manifold

Definition 3.29. A compact connected manifold (M, g) is said to be simple
if (M, g) is non-trapping, it has strictly convex boundary and has no conjugate
points.

Proposition 3.30. Let (M, g) be a simple manifold. Given x, y ∈M , there is
a unique geodesic connecting x to y and this geodesic is minimizing.

Proof. Since ∂M is strictly convex, Proposition 3.25 ensures that there is a
minimizing geodesic connecting x to y. Since M is non-trapping, it must be simply
connected by Proposition 3.26. Thus Proposition 3.28 implies that there is only
one geodesic connecting x to y and this geodesic must be minimizing. �

Given x ∈M , let Dx ⊂ TxM be the set given by

Dx := {tv : v ∈ SxM, t ∈ [0, τ(x, v)]}.

The previous proposition asserts that if M is simple, then

expx : Dx →M

is a bijection. Since there are no conjugate points, expx is a local diffeomorphism
at any tv ∈ Dx and hence expx : Dx → M is a diffeomorphism. This implies in
particular that M is diffeomorphic to a closed ball in Euclidean space: if x is in the
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interior of M , then Dx is a closed star-shaped domain around zero with smooth
boundary and hence diffeomorphic to a closed ball.

Proposition 3.31. Let (M, g) be a compact manifold with strictly convex
boundary. The following are equivalent:

(1) (M, g) is simple;
(2) M is simply connected and has no conjugate points.

Any of these two properties implies:

• Given two points in M , there is a unique geodesic connecting them and
this geodesic is minimizing.

Proof. (1) =⇒ (2): If M is simple, then it has no conjugate points by
definition. It is simply connected due to Proposition 3.26.

(2) =⇒ (1): Suppose M has strictly convex boundary, is simply connected and
has no conjugate points. Proposition 3.28 implies that between two points in M
there is a unique geodesic and this geodesic must be minimizing. It follows that all
geodesics have length less than or equal to the diameter of M , hence the manifold
is non-trapping and (M, g) is simple.

�

G: The condition of having a unique geodesic between two points does not seem
to be quite enough to imply that (M, g) is simple. It is enough to guarantee
that the interior of M has no conjugate points, but in principle there could be
conjugate points between boundary points. It would be good to find an exam-
ple. The “original” definition of simple manifold seems to be lost in time. I
could not find it as we use it today in Michel’s original paper. Also the defi-
nition of strictly convex boundary could vary a bit. We are using the strongest
form. If you demand the exponential map to be a diffeomorphism or equiva-
lently ask for the unique geodesic to depend smoothly on end points you re-
move this issue, as you ensure the no conjugate point condition also at the
boundary. Who coined the word “simple”?

Proposition 3.32. Let (M, g) be simple manifold. Any sufficiently small
neighbourhood U of M in N has the property that U is simple.

Proof. Clearly any sufficiently small neighbourhood U has the property that
its closure U has strictly convex boundary and is simply connected. To see that
the property of having no conjugate points persists when we go to U , for U
sufficiently close to M , assume that this is not the case. Then there exists a
sequence (xn, vn) ∈ SN \ SM converging to (x, v) ∈ ∂+SM and a sequence
(yn, wn) ∈ SN converging to (y, w) ∈ SM such that ϕtn(xn, vn) = (yn, vn) and
d(xn,vn)ϕtn(V(xn, vn)) ∩ V(yn, wn) 6= {0} (conjugate point condition).

If the sequence tn is bounded, by passing to a subsequence, we deduce that there
is t0 > 0 such that d(x,v)ϕt0(V(x, v)) ∩ V(y, w) 6= {0} and thus M has conjugate
points. Indeed, we have unit vectors (in the Sasaki metric) ξn ∈ V(xn, vn) such
that

d(xn,yn)π ◦ ϕtn(ξn) = 0

and passing to subsequences if necessary we find a unit norm ξ ∈ V(y, w) for which

dπ ◦ d(y,w)ϕt0(ξ) = 0.
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If tn is unbounded, we may assume by passing to a subsequence that tn → ∞
and thus the geodesic determined by (x, v) has infinite length thus violating the
non-trapping property.

�

G: I think there is another proof of this using the continuity of the cut time
function tc : SN → (0,∞). A classical result in Riemannian geometry (cf.
Sakai’s book, Proposition 4.1) asserts that tc is locally Lipschitz around a point
(x, v) for which is finite. Hence if N is closed, tc is continuous in all SN . If
geodesics on M have no conjugate points and between two points there is only
one, then cut points do not occur in M (again cf. Sakai’s book, Proposition
4.1), i.e. for all (x, v) ∈ SM , τ(x, v) < tc(x, v). This means that one can go a
bit further along any geodesic and by a uniform amount.

Remark 3.33. Using this proposition we can now see that (M, g) is simple iff
M has a neighbourhood U such that any two points in U are joined by a unique
geodesic.

Then there is also the equivalence of simplicity with smoothness of the boundary
distance function. There is the following folklore result:

Proposition 3.34. Let (N, g) be a complete Riemannian manifold. Take x 6=
y ∈ N . Then the distance function dg is smooth in a neighbourhood of (x, y) iff x
and y are connected by a unique geodesic that is minimizing and free of conjugate
points.prop:dsmooth

Sketch. If the condition on geodesics hold, write d(x, y) = | exp−1
x (y)| and

smoothness of d follows. For the converse fix x and set f(y) := d(x, y). Then if
f is differentiable at y and there is a unit speed minimizing geodesic γ connecting
x to y, then ∇f(y) is the velocity vector of γ at y. So if we have more than one
minimizing geodesic the gradient wants to be two different things at the same time;
absurd. For the conjugate points we have to go to the second derivatives of d and
see that if x and y are conjugate along the unique minimizing geodesic joining them,
then the Hessian blows up.

�

Next we would like to prove the claim:

Proposition 3.35. Let (M, g) be a compact manifold with strictly convex
boundary. Then M is simple iff the boundary distance function dg|∂M×∂M is
smooth away from the diagonal.

This is another folklore claim that appears often in the papers of Burago and
Ivanov. At first glance it looks as if it follows from Proposition 3.34 but some
additional work is needed. This is because we have to go from smoothness of the
restriction of d to ∂M×∂M\∆ to smoothness of d in the ambient manifold M (or an
extension N). Now there is this observation used later in the proof of Proposition
11.7 that says that if f(y) := d(x, y) and h = f |∂M , then the gradient of h at
y ∈ ∂M determines the gradient of f at y. This goes in the right direction and uses
of course that distance functions solve the Hamilton-Jacobi equation |∇f | = 1.
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G: This seems OK but it may take some effort to write down in full detail. We
do not really use it, so we need to discuss if it is worth including it.
One last point to discuss has to do with convexity: positive definite second fun-
damental form implies the interiors of geodesics lie in the interior of M , but the
converse is not necessarily true, right?



CHAPTER 4

The geodesic X-ray transform

chapter3
This chapter should set basic properties of the X-ray transform on a non-

trapping manifold with strictly convex boundary.

4.1. Volume forms and Santaló’s formula

Let (M, g) be a compact, connected and oriented Riemannian manifold of di-
mension n ≥ 2. The unit tangent bundle SM carries a natural volume form called
the Liouville form. We shall denote it by dΣ2n−1. This form can also be interpreted
as the volume form of the Sasaki metric on SM or the volume form associated with
the contact form of the geodesic flow. At a point (x, v) ∈ SM it can be written as

dΣ2n−1 = dV n ∧ dSx

where dV n is the volume form of (M, g) and dSx is the volume form on the fibre
SxM induced by the metric g at x. Loiuville’s theorem in classical mechanics
asserts that the geodesic flow preserves dΣ2n−1, in other words, the Lie derivative
LXdΣ2n−1 = 0. Similarly, ∂SM carries a natural volume

dΣ2n−2 := dV n−1 ∧ dSx

where dV n−1 is the volume form of (∂M, g). This is just the volume form of the
Sasaki metric restricted to ∂SM .
G: Elaborate on this? Prove some of the claims perhaps and/or give references.
Should the volume forms be introduced in Chapter 2 instead?

Exercise 4.1. Show that j∗iνdΣ2n−1 = −dΣ2n−2, where ν = (ν, 0) is the
horizontal lift of the unit normal ν and j : ∂SM → SM is the inclusion map. Show
that j∗iXdΣ2n−1 = −µdΣ2n−2.

G: check orientations

Proposition 4.2 (Santaló’s formula). Let (M, g) be a non-trapping manifold
with strictly convex boundary. Given f ∈ C(SM,R) we have∫

SM

f dΣ2n−1 =

∫
∂+SM

dµ(x, v)

∫ τ(x,v)

0

f(ϕt(x, v)) dt,

where dµ = µdΣ2n−2.proposition:santalo

Proof. Consider the set

D := {(x, v, t) : (x, v) ∈ ∂+SM, t ∈ [0, τ(x, v)]} ⊂ ∂+SM × R

33
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and the map Ψ : D → SM given by Ψ(x, v, t) = ϕt(x, v). The map Ψ is a
diffeomorphism restricted to the interior of D and thus∫

SM

f dΣ2n−1 = ±
∫
D

(f ◦Ψ)Ψ∗(dΣ2n−1).

(the ± depends on whether Ψ preserves or reverts orientations.) By definition, the
differential of Ψ maps ∂/∂t to X. Since by Liouville’s theorem LXdΣ2n−1 = 0 we
see that L∂/∂tΨ

∗dΣ2n−1 = 0. This means that we can write

Ψ∗dΣ2n−1 = adΣ2n−2 ∧ dt

where the function a does not depend on t, i.e. a ∈ C∞(∂+SM). This implies∫
SM

f dΣ2n−1 = ±
∫
∂+SM

a(x, v)dΣ2n−2

∫ τ(x,v)

0

f(ϕt(x, v)) dt.

To complete the proof, we will check that a = −µ. To this end it is enough to
compute Ψ∗dΣ2n−1(x, v, 0). Since ϕ0(x, v) = (x, v), the map dΨ(x,v,0) is given by
the identity restricted to T(x,v)∂+SM and it maps ∂/∂t to X(x, v). Consider an

oriented orthonormal basis {ξ1, . . . , ξ2n−2} of T(x,v)∂+SM . By definition of dΣ2n−1

and the boundary orientation

dΣ2n−1(ν, ξ1, . . . , ξ2n−2) = −1.

(ν is inward unit normal.) On the other hand

Ψ∗dΣ2n−1(x, v, 0)(ξ1, . . . , ξ2n−2, ∂/∂t) = dΣ2n−1(ξ1, . . . , ξ2n−2, X(x, v)).

Writing X = (X − µν) + µν we see that

a = Ψ∗dΣ2n−1(x, v, 0)(ξ1, . . . , ξ2n−2, ∂/∂t) = −µ

since (X−µν) is tangent to ∂SM . And finally we observe that Ψ reverses orientation
so all signs agree and the proof is completed.

�

G:Obviously signs and orientations need a careful checking... We can avoid dis-
cussing orientations if we only consider measures.

4.1.1. Alternative proof of Santaló’s formula. We shall need the follow-
ing lemma which is an easy consequence of Stokes’ theorem.

Lemma 4.3. Let N be a compact manifold with boundary, Θ a volume form, Y
a vector field and u ∈ C∞(N). Then∫

N

Y (u)Θ = −
∫
N

uLY Θ +

∫
∂N

uiY Θ.

lemma:Yu

Proposition 4.4 (Alternative proof of Santaló’s formula). Let (M, g) be a
non-trapping manifold with strictly convex boundary. Given f ∈ C∞c (SM,R) we
have ∫

SM

f dΣ2n−1 =

∫
∂+SM

dµ(x, v)

∫ τ(x,v)

0

f(ϕt(x, v)) dt,

where dµ = µdΣ2n−2.
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Proof. Recall that τ ∈ C(SM,R). Given f ∈ C∞c (SM,R), define for (x, v) ∈
SM ,

eq:ufeq:uf (4.1) uf (x, v) :=

∫ τ(x,v)

0

f(ϕt(x, v)) dt.

Clearly uf ∈ C(SM,R) and uf |∂−SM = 0. But if f has compact support in the

interior of M , then uf is in fact smooth. A simple computation shows that

eq:transporteq:transport (4.2) Xuf = −f.

We now apply Lemma 4.3 for the case N = SM , Y = X and u = uf . Since
LXdΣ2n−1 = 0 and uf |∂−SM = 0 we deduce∫

SM

f dΣ2n−1 = −
∫
∂+SM

uf iXdΣ2n−1.

The proposition now follows from the fact that j∗iXdΣ2n−1 = −dµ.
�

Exercise 4.5. Use an approximation argument to show that Santaló’s formula
holds for f ∈ L1(SM).

Using Santaló’s formula we can determine a natural volume form that is pre-
served by the scattering relation. Given h ∈ C∞(∂+SM,R) we can naturally
associate to it a first integral of the geodesic flow by writing

h](x, v) := h(ϕ−τ(x,−v)(x, v)), (x.v) ∈ SM.

Proposition 4.6. Let (M, g) be a non-trapping manifold with strictly convex
boundary. Then

α∗(µdΣ2n−2) = −µdΣ2n−2.

Moreover

α∗
(µ
τ̃
dΣ2n−2

)
=
µ

τ̃
dΣ2n−2.

Proof. Let w ∈ C∞(∂+SM). Then using Santaló’s formula∫
∂+SM

wτµ dΣ2n−2 =

∫
∂+SM

∫ τ(x,v)

0

w](ϕt(x, v))µdtdΣ2n−2 =

∫
SM

w] dΣ2n−1

Set û(x, v) = u(x,−v) for u ∈ C(SM), one has∫
SM

w] dΣ2n−1 =

∫
SM

ŵ] dΣ2n−1

=

∫
∂−SM

∫ τ(y,−η)

0

ŵ](ϕt(y,−η))(−µ) dtdΣ2n−2

=

∫
∂−SM

∫ τ(y,−η)

0

w(α(y, η))(−µ) dtdΣ2n−2

=

∫
∂+SM

wτα∗(−µdΣ2n−2),

where we used Santaló’s formula again in the second line. Varying w shows that
α∗(−µdΣ2n−2) = µdΣ2n−2 on ∂+SM\∂0SM . Using that α2 = id we deduce that
α∗(µdΣ2n−2) = −µdΣ2n−2 in all ∂SM . The second identity in the proposition
follows from τ̃ ◦ α = −τ̃ and Lemma 3.19. �
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Does α preserve or revert orientation? Check. This is implicitly used above

4.2. The geodesic X-ray transform

Motivated by the proof of Santaló’s formula we make the following definition.

Definition 4.7. Let (M, g) be a compact non-trapping manifold with strictly
convex boundary. The geodesic X-ray transform is the operator

I : C∞(SM)→ C∞(∂+SM)

given by

(If)(x, v) :=

∫ τ(x,v)

0

f(ϕt(x, v)) dt.

Note that since τ ∈ C∞(∂+SM), If ∈ C∞(∂+SM). We shall denote by
L2(SM) the space of L2-functions on SM with respect to the volume form dΣ2n−1

and by L2
µ(∂+SM) the space of L2-functions on ∂+SM with respect to the measure

dµ. If we drop we subscript µ it means that we are considering the L2-space with
respect to the volume form dΣ2n−2. In general, if p is a weight, we denote by L2

p

the L2 space with respect to the measure pdΣ2n−2.

Proposition 4.8. The operator I extends to a bounded operator

I : L2(SM)→ L2
µ(∂+SM).

Moreover, the following stronger result holds: I extends to a bounded operator

I : L2(SM)→ L2(∂+SM).

prop:L2bound

Proof. Since p := µ/τ̃ ∈ C∞(∂SM) and is strictly positive by Lemma 3.8, it
suffices to prove the lemma using the measure pdΣ2n−2 in the target space. Take
f ∈ C∞(SM) and write using Cauchy-Schwarz

‖If‖2L2
p(∂+SM) =

∫
∂+SM

(∫ τ(x,v)

0

f(ϕt(x, v)) dt

)2

pdΣ2n−2

≤
∫
∂+SM

(∫ τ(x,v)

0

f2(ϕt(x, v)) dt

)
τpdΣ2n−2

=

∫
∂+SM

(∫ τ(x,v)

0

f2(ϕt(x, v)) dt

)
µdΣ2n−2

=

∫
SM

f2 dΣ2n−1 = ‖f‖2L2(SM),

where in the last line we have used Santaló’s formula in Proposition 4.2.
�

The next result characterizes functions in the kernel of the geodesic X-ray
transform in terms of solutions to the transport equation Xu = f .

Proposition 4.9. A function f ∈ C∞(SM) satisfies If = 0 iff there is u ∈
C∞(SM) such that u|∂SM = 0 and Xu = f .proposition:redtrans
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Proof. Given any smooth function u with Xu = f , if we integrate along the
geodesic flow we obtain

u ◦ α(x, v)− u(x, v) =

∫ τ(x,v)

0

f(ϕt(x, v)) dt = (If)(x, v)

for (x, v) ∈ ∂+SM . Hence if u|∂SM = 0, the above equality implies If = 0.
For the converse we would like to use the function

uf (x, v) =

∫ τ(x,v)

0

f(ϕt(x, v)) dt

introduced before. If If = 0, then uf |∂SM = 0. One issue is that in principle, uf is
not smooth at the glancing ∂0SM (since τ suffers the same condition). However, it
turns out that if uf |∂SM = 0, then actually uf ∈ C∞(SM). This will follow from
a general regularity result to be proved in Chapter 5, namely Theorem 5.10. Since
Xuf = −f , the proposition is proved.

�

4.3. The adjoint I∗

To compute the adjoint of I : L2(SM) → L2
µ(∂+SM) with respect to the L2

inner products consider f ∈ C∞(SM,R) and h ∈ C∞(∂+SM,R) and write

(If, h) =

∫
∂+SM

If h dµ =

∫
∂+SM

dµ(x, v)

(∫ τ(x,v)

0

f(ϕt(x, v))h(x, v) dt

)
.

Recall that given h ∈ C∞(∂+SM,R) we denote

h](x, v) = h(ϕ−τ(x,−v)(x, v)), (x.v) ∈ SM.

We can write the above expression as

(If, h) =

∫
∂+SM

dµ(x, v)

(∫ τ(x,v)

0

f(ϕt(x, v))h](ϕt(x, v)) dt

)
.

Using Santaló’s formula we derive

(If, h) =

∫
SM

fh]dΣ2n−1 = (f, h])

and hence

I∗h = h].

Exercise 4.10. Let `0 : C∞(M)→ C∞(SM) be the map given by `0f = f ◦π,
where π : SM → M is the canonical projection. Show that the adjoint `∗0 is given
by

(`∗0g)(x) =

∫
SxM

g(x, v) dSx(v).
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4.4. Pestov identity

In this section we consider the Pestov identity in 2D, which is the basic energy
identity that has been used since the work of Mukhometov [Muh77] in most injec-
tivity proofs of ray transforms in the absence of real-analyticity or special symme-
tries. Pestov type identities were also used in [AR97] to prove solenoidal injectivity
for I acting on 1-forms on simple manifolds and in [PS87] to prove solenoidal in-
jectivity in any dimensions and for tensors of any order, if the sectional curvatures
are negative. These identities have often appeared in a somewhat ad hoc way, but
here we give a point of view which makes its derivation more transparent.

The easiest way to motivate the Pestov identity is to consider the injectivity of
the ray transform on functions. We let I0 : C∞(M) → C∞(∂+SM) be defined by
I0 := I ◦ `0, where `0 is the pull-back of functions from M to SM .

The first step is to recast the injectivity problem for I0 as a uniqueness question
for the partial differential operator P on SM where

P := V X.

This involves a standard reduction to the transport equation as we have done
already in Proposition 4.9.

Proposition 4.11. Let (M, g) be a compact oriented nontrapping surface with
strictly convex smooth boundary. The following statements are equivalent.

(a) The ray transform I0 : C∞(M)→ C∞(∂+SM) is injective.
(b) Any smooth solution of Pu = 0 in SM with u|∂SM = 0 is identically zero.

proposition:redI0

Proof. Assume that the ray transform is injective, and let u ∈ C∞(SM)
solve Pu = 0 in SM with u|∂SM = 0. This implies that Xu = −f in SM for
some smooth f only depending on x, and we have 0 = u|∂+SM = I0f . Since I0 is
injective one has f = 0 and thus Xu = 0, which implies u = 0 by the boundary
condition.

Conversely, assume that the only smooth solution of Pu = 0 in SM which
vanishes on ∂SM is zero. Let f ∈ C∞(M) be a function with I0. Proposition
proposition:redtrans gives a u ∈ C∞(SM) such that Xu = f and u|∂SM = 0.
Since f only depends on x we have V f = 0, and consequently Pu = 0 in SM and
u|∂(SM) = 0. It follows that u = 0 and also f = −Xu = 0. �

We now focus on proving a uniqueness statement for solutions of Pu = 0 in SM .
For this it is convenient to express P in terms of its self-adjoint and skew-adjoint
parts in the L2(SM) inner product as

P = A+ iB, A :=
P + P ∗

2
, B :=

P − P ∗

2i
.

Here the formal adjoint P ∗ of P is given by

P ∗ := XV.

In fact, if u ∈ C∞(SM) with u|∂SM = 0, then

‖Pu‖2 = ((A+ iB)u, (A+ iB)u) = ‖Au‖2 + ‖Bu‖2 + i(Bu,Au)− i(Au,Bu)

p_ab_computationp_ab_computation (4.3)

= ‖Au‖2 + ‖Bu‖2 + (i[A,B]u, u).
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This computation suggests to study the commutator i[A,B]. We note that the
argument just presented is typical in the proof of L2 Carleman estimates [H0̈9].

By the definition of A and B it easily follows that i[A,B] = 1
2 [P ∗, P ]. By the

commutation formulas for X, X⊥ and V , this commutator may be expressed as

[P ∗, P ] = XV V X − V XXV = V XV X +X⊥V X − V XV X − V XX⊥
= V [X⊥, X]−X2 = −X2 + V KV.

Consequently

([P ∗, P ]u, u) = ‖Xu‖2 − (KV u, V u).

If the curvature K is nonpositive, then [P ∗, P ] is positive semidefinite. More gen-
erally, one can try to use the other positive terms in (4.3). Note that

‖Au‖2 + ‖Bu‖2 =
1

2
(‖Pu‖2 + ‖P ∗u‖2).

The identity (4.3) may then be expressed as

‖Pu‖2 = ‖P ∗u‖2 + ([P ∗, P ]u, u).

Moving the term ‖Pu‖2 to the other side, we have proved the version of the Pestov
identity which is most suited for our purposes. The main point in this proof was
that the Pestov identity boils down to a standard L2 estimate based on separating
the self-adjoint and skew-adjoint parts of P and on computing one commutator,
[P ∗, P ].

prop_pestov_standard Proposition 4.12 (Pestov Identity). If (M, g) is a compact oriented surface
with smooth boundary, then

‖XV u‖2 − (KV u, V u) + ‖Xu‖2 − ‖V Xu‖2 = 0

for any u ∈ C∞(SM) with u|∂SM = 0.

We now show:

Proposition 4.13. Let (M, g) be a simple surface. Then given ψ ∈ C∞(SM)
with ψ|∂SM = 0 we have

‖Xψ‖2 − (Kψ,ψ) ≥ 0,

with equality iff ψ = 0.proposition:nonconj

Proof. Using Santaló’s formula, we may write
eq:psisaneq:psisan (4.4)∫

SM

((Xψ)2 −Kψ2) dΣ3 =

∫
∂+SM

dµ(x, v)

∫ τ(x,v)

0

(ψ̇2(t)−K(γx,v(t))ψ
2(t)) dt,

where ψ(t) = ψ(ϕt(x, v)). Observe that ψ(0) = ψ(τ(x, v)) = 0. The argument that
follows is done on a fixed geodesic γx,v with (x, v) ∈ ∂+SM\∂0SM . Since (M, g) has
no conjugate points, the unique solution y to the Jacobi equation ÿ+K(γx,v(t))y = 0
with y(0) = 0 and ẏ(0) = 1, does not vanish for t ∈ (0, τ ]. Hence we may define a
function q by writing

ψ(t) = q(t)y(t), for t ∈ (0, τ ].

Since ψ(0) = y(0) = 0 and ẏ(0) = 1, it is immediate that q extends smoothly to
t = 0. Using the Jacobi equation we compute

(ψ̈ +Kψ)ψ = q
d

dt
(q̇y2).
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Thus integrating by parts we derive∫ τ

0

(ψ̇2 −Kψ2) dt = −
∫ τ

0

q
d

dt
(q̇y2) dt = −[qq̇y2]τ0 +

∫ τ

0

q̇2y2 dt

=

∫ τ

0

q̇2y2 dt ≥ 0,

since ψ(0) = ψ(τ) = 0. Equality in the last line holds iff q is constant. Since
ψ(τ) = qy(τ) = 0 with y(τ) 6= 0, it follows that equality holds iff ψ ≡ 0. Going
back to (4.4), we see that the inequality in the proposition holds with equality iff
ψ vanishes.

�

We can now combine these results to prove

Theorem 4.14. Let (M, g) be a simple surface. Then I0 is injective.thm:mukh

Proof. By Proposition 4.11 it suffices to show a vanishing result for Pu = 0
with u|∂SM = 0. Proposition 4.12 gives

‖XV u‖2 − (KV u, V u) + ‖Xu‖2 = 0

and combining this with Proposition 4.13 (note that V u|∂SM = 0) we derive V u =
Xu = 0 and hence u = 0 as desired.

�

Exercise 4.15. Prove the Pestov identity with boundary terms. More pre-
cisely, given any u ∈ C∞(SM) show that

‖XV u‖2 − (KV u, V u) + ‖Xu‖2 − ‖V Xu‖2 = (Tu, V u)∂SM ,

where T is the vector field on ∂SM given by T := (V µ)X + µX⊥. Check that T is
tangent to ∂SM .xca:T

G: Check the sign of T given the inward unit normal choice.

We are now going to prove some additional useful properties of the function τ .
As in Chapter 3, consider a function ρ ∈ C∞(M) such that it coincides with M 3
x 7→ d(x, ∂M) in a neighbourhood of ∂M and such that ρ ≥ 0 and ∂M = ρ−1(0).
Clearly ρ(x) = ν(x) for x ∈ ∂M . Using ρ, we extend ν to the interior of M as
ν(x) = ∇ρ(x) for x ∈M .

As before we let µ(x, v) := 〈v, ν(x)〉 and

T := V (µ)X + µX⊥.

Note that T is now defined on all SM and agrees with the vector field T defined
in Exercise 4.15 on ∂SM . In fact T and V are tangent to every ∂SMε = {(x, v) ∈
SM : x ∈ ρ−1(ε)}, where Mε = ρ−1(−∞, ε].

Exercise 4.16. Prove that [V, T ] = 0 in SM .

Lemma 4.17. The functions Tτ and V τ are bounded on SM \ ∂0SM .lemma:tau

Proof. We set h(x, v, t) := ρ(γx,v(t)) and compute

T (h(x, v, 0)) = T (ρ) = V (µ)X(ρ) + µX⊥(ρ) = V (µ)dρ− µV (dρ) = 0
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since dρ(x, v) = µ(x, v). Therefore, there exists a smooth function a(x, v, t) such
that

T (h(x, v, t)) = ta(x, v, t).

Next we apply T to the equality h(x, v, τ(x, v)) = 0 to get

T (h(x, v, t))|t=τ(x,v) +
∂h

∂t
(x, v, τ(x, v))Tτ = 0.

If we write (y, w) = (γx,v(τ(x, v)), γ̇x,v(τ(x, v)) ∈ ∂−SM , then the identity above
can be re-written as

τ(x, v)a(x, v, τ(x, v)) + µ(y, w)Tτ = 0.

If (x, v) ∈ SM \ ∂0SM , then µ(y, w) 6= 0 and we may write

Tτ =
−τ(x, v)a(x, v, τ(x, v))

µ(y, w)

and since

0 <
−τ(x, v)

µ(y, w)
≤ τ(y,−w)

µ(y,−w)

it follows that Tτ is bounded by Lemma 3.8. Since V (ρ) = 0, the proof for V τ is
entirely analogous.

�

The following corollary is immediate.

Corollary 4.18. Let (M, g) a non-trapping surface with strictly convex bound-
ary. Given f ∈ C∞(SM), the function

uf (x, v) =

∫ τ(x,v)

0

f(ϕt(x, v)) dt

has Tuf and V uf bounded in SM \ ∂0SM .corollary:uf

4.5. Stability estimate in non-positive curvature

In this section we show how the Pestov identity can be used to derive a basic
stability estimate for I0 when the Gaussian curvature K ≤ 0. Later on we shall
improve this estimate and extend it to include tensors. Given w ∈ C∞(∂+SM) we
define its H1-norm as

‖w‖2H1 := ‖Tw‖2 + ‖V w‖2 + ‖w‖2.

Theorem 4.19. Let (M, g) be a non-trapping surface with strictly convex bound-
ary and K ≤ 0. Then

‖f‖ ≤ 1√
2
‖I0f‖H1

for any f ∈ C∞(M).

G: We know how to do this in the simple case as well, we need to introduce
solutions to the Riccati equations, etc. Maybe this can be done later. At this
point it is better to keep things as elementary as possible.
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Proof. We wish to use identity from Exercise 4.15; since this identity was
derived for smooth functions and uf fails to be smooth at the glancing we apply it
to Mε (as defined above) and u = uf |SMε for ε small. Since K ≤ 0, Xuf = −f and
V f = 0, we derive

‖f‖2L2(SMε)
≤ (Tuf , V uf )∂SMε .

Let ε→ 0 and using Corollary 4.18 we deduce (cf. Exercise 4.20 below)

‖f‖2L2(SM) ≤ (Tuf , V uf )∂SM .

Since uf |∂−SM = 0 and I0f = uf |∂+SM we deduce

‖f‖2L2(SM) ≤ (TI0f, V I0f)∂+SM ≤
1

2
(‖TI0f‖2 + ‖V I0f‖2) ≤ 1

2
‖I0f‖2H1 .

and the theorem is proved.
�

Exercise 4.20. Consider the vector field N := µX − V (µ)X⊥ and let Ft be
its flow. Show that for ε small enough Fε : ∂SM → ∂SMε. Write F ∗ε dΣ2

ε = qεdΣ2,
where qε is smooth and q0 = 1 since F0 is the identity. Show that

(Tuf , V uf )∂SMε
= (qε(Tu

f ◦ Fε), V uf ◦ Fε)∂SM .
Use Corollary 4.18 and the dominated convergence theorem to conclude that as
ε→ 0

(qε(Tu
f ◦ Fε), V uf ◦ Fε)∂SM → (Tuf , V uf )∂SM .xca:justi

Exercise 4.21. Let (M, g) be a non-trapping surface with strictly convex
boundary and let f ∈ C∞(SM). Using the Pestov identity with boundary term
and Corollary 4.18 show that XV uf ∈ L2(SM). Using that X⊥ = [X,V ] conclude
that X⊥u

f ∈ L2(SM) and thus uf ∈ H1(SM).

4.6. Examples showing that injectivity fails if conditions are not
imposed



CHAPTER 5

Regularity results for the transport equation

chapter4
Here we show all the necessary regularity results for the various transport

equations we will be using (including systems and general attenuations).

5.1. Smooth first integrals

Let (M, g) be a non-trapping manifold with strictly convex boundary. Recall
that given w ∈ C∞(∂+SM) we set

w](x, v) = w(ϕ−τ(x,−v)(x, v)).

The function w] is a first integral of the geodesic flow, i.e. it is constant along
its orbits. From the properties of τ we know that w] is smooth on SM \ ∂0SM ,
but it may not be smooth at the glancing. In the section we will characterize
when smoothness holds. We can easily guess a necessary condition. Indeed, since
w](x, v) = w ◦ α(x, v) for (x, v) ∈ ∂−SM , we see that if w] ∈ C∞(SM), then

w]|∂SM =

{
w(x, v), (x, v) ∈ ∂+SM,
w ◦ α(x, v), (x, v) ∈ ∂−SM

must be smooth in ∂SM . We shall show that this condition is also sufficient.
Following [PU05] we introduce the operator of even continuation with respect

to α:

A+w(x, v) :=

{
w(x, v), (x, v) ∈ ∂+SM,
w ◦ α(x, v), (x, v) ∈ ∂−SM

for w ∈ C∞(∂+SM). Clearly A+ : C∞(∂+SM) → C(∂SM). We also introduce
the space

C∞α (∂+SM) := {w ∈ C∞(∂+SM) : A+w ∈ C∞(∂SM)}.

The main result of this section is the following characterization.

Theorem 5.1 ([PU05]). Let (M, g) be a non-trapping manifold with strictly
convex boundary. Then

C∞α (∂+SM) = {w ∈ C∞(∂+SM) : w] ∈ C∞(SM)}.

thm:keyregularity

Proof. We assume (M, g) isometrically embedded in a closed manifold (N, g)
of the same dimension as M . Consider some smooth extension W of A+w = w]|∂SM
into SN . Writing F (t, x, v) = 1

2W (ϕt(x, v)), it follows that

w](x, v) =
1

2

[
W (ϕτ(x,v)(x, v)) +W (ϕ−τ(x,−v)(x, v))

]
= F (τ(x, v), x, v) + F (−τ(x,−v), x, v).

43
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Recall that we already know that w] is smooth in SM \ ∂0SM , so let us discuss
what happens at the glancing. Fix some (x0, v0) ∈ ∂0SM and use Lemma 3.10 to
write

w](x, v) = F (Q(
√
a(x, v), x, v), x, v) + F (Q(−

√
a(x, v), x, v), x, v)

near (x0, v0) in SM . Setting G(r, x, v) := F (Q(r, x, v), x, v), we have

w](x, v) = G(
√
a(x, v), x, v) +G(−

√
a(x, v), x, v)

near (x0, v0) in SM , where G is smooth near (0, x0, v0) in R× SN . Now

G(r, x, v) +G(−r, x, v) = H(r2, x, v)

where H is smooth near (0, x0, v0) . This finally shows thatM: this is the
fact that an even
function f(t) can
be written as
g(t2), probably
we should give a
short proof

M: this is the
fact that an even
function f(t) can
be written as
g(t2), probably
we should give a
short proof

w](x, v) = H(a(x, v), x, v)

near (x0, v0) in SM , proving that w] is smooth near (x0, v0) in SM . Since (x0, v0) ∈
∂0SM was arbitrary, we have w] ∈ C∞(SM). �

5.2. Folds and the scattering relation

The original proof of Theorem 5.1 was based on a result in [Hör85, Theorem
C.4.4] which is in turned underpinned by a result like Lemma 3.11.In this section weG:rephrase?G:rephrase?
explain the original approach in [PU05] as it is geometrically quite illuminating.

We start with a general definition from Differential Topology; for what follows
we refer to [Hör85, Appendix C] for details.

Definition 5.2. Let f : M → N be a smooth map between manifolds of
the same dimension. We say that f is a Whitney fold (with fold L) at m ∈ M
if dfm : TmM → Tf(m)N drops rank simply by one, so {x : dfx is singular} is a
smooth hypersurface L near m and ker dfm is transversal to TmL.

G: This is the definition in [PU05], but I am not sure I am happy with the ter-
minology ”drops rank simply by one”. Hörmander phrases this using the Hes-
sian of the map at the point.

If f has a fold at m ∈ M , there exists an involution σ : M → M (locally
defined) such that σ2 = Id, σ 6= Id, f ◦ σ = f and the set of fixed points of σ
coincide with L near m. In fact, f has a very simple normal form near m, that is,
in suitable coordinates f has a local expression at zero:

f(y1, . . . , yn) = (y1, . . . , yn−1, y
2
n).

Moreover, the involution is just σ(y′, yn) = (y′,−yn), where y′ = (y1, . . . , yn−1) and
L is determined by yn = 0. Using this normal form it is not hard to show following
result holds:

Theorem 5.3. [Hör85, Theorem C.4.4] Suppose f has a fold at m and let u be
C∞ in a neighbourhood of m ∈ M . Then, there exists v ∈ C∞ in a neighbourhood
of f(m) ∈ N with v ◦ f = u iff u ◦ σ = u.thm:Horfold

One implication in the theorem is straightforward: if v exists with v ◦ f = u,
then u ◦ σ = v ◦ f ◦ σ = v ◦ f = u, so the content of the theorem is the converse
statement.

Let us return now to the situation we are interested in, namely, let (M, g) be
a non-trapping manifold with strictly convex boundary. As usual we consider M
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isometrically embedded in a closed manifold of the same dimension and we let M0

be a slightly larger manifold so that it is also non-trapping and with strictly convex
boundary. We let its exit time function be τ0. We define map φ : ∂SM → ∂−SM0

by

φ(x, v) := ϕτ0(x,v)(x, v).

This map is C∞ since τ0|SM is C∞. Here is the main claim about φ:

Proposition 5.4. The map φ is a Whitney fold at every point of the glancing
∂0SM . Moreover, the relevant involution is the scattering relation α.proposition:wf

Proof. Let us first check that φ ◦ α = φ. Indeed

φ(α(x, v)) = ϕτ0(ϕτ̃(x,v)(x,v))(ϕτ̃(x,v)(x, v)) = ϕτ0(ϕτ̃(x,v)(x,v))+τ̃(x,v)(x, v)

and since τ0(ϕτ̃(x,v)(x, v)) = τ0(x, v)− τ̃(x, v) the claim follows.
To prove that φ is a Whitney fold with fold ∂0SM we must now show that

given (x, v) ∈ ∂0SM we have

eq:foldeq:fold (5.1) ker dφ(x,v) ⊕ T(x,v)∂0SM = T(x,v)∂SM.

To this end, we consider ξ ∈ T(x,v)∂SM and we compute using the chain rule

dφ(x,v)(ξ) = dτ0(ξ)X(φ(x, v)) + dϕτ0(x,v)(ξ)

and from this it follows that ker dφ(x,v) = RX(x, v) since dτ0(X(x, v)) = −1 and
dϕτ0(x,v)(X(x, v)) = X(φ(x, v)). Since we are assuming that ∂M is strictly convex,
(5.1) follows directly from Lemma 3.20.

G: This seems incomplete to me, as one also needs to check the condition on
the Hessian. An ammeded slightly different proof appears in the paper with
Nurlan, Plamen and Gunther; this follows.

Let Σ be a manifold and F a smooth function with 0 as regular value. Let
M = F−1(0) and consider a non-vanishing vector fieldX on Σ such thatXF (m) = 0
and X2F (m) 6= 0 for a point m ∈ M. Let N be a hypersurface in Σ transversal to
X such that f : M → N, the projection along integral curves of X is well defined.
We claim that f is Whitney fold at m with fold L = M ∩ (XF )−1(0). Indeed,
this claim can be checked by looking at the picture in Σ = Rn with X = ∂

∂xn
and

N = {xn = 0}.
Let us apply this observation to the following situation of interest to us. We

take Σ = SN where N is a closed manifold containing M . Let ρ : N → R be
a boundary defining function for ∂M as in Chapter 3 so that ρ−1(0) = ∂M . If
π : SN → N is the canonical projection we set F := ρ ◦ π. We now take as X the
geodesic vector field and as m a point (x, v) ∈ ∂0SM . We have already computed
XF (m) and X2F (m). Indeed from the proof of Lemma 3.6 we see that XF (m) = 0
and X2F (m) = Hessxρ(v, v) = −Πx(v, v) < 0. Note that M = F−1(0) = ∂SM .

We next take as N := ∂−SM0 and we see that φ : ∂SM → ∂−SM0 is precisely
projection along the geodesic flow. Thus Proposition 5.4 follows.

�

We now explain how to use Theorem 5.3 to give a proof of Theorem 5.1. Con-
sider a function w ∈ C∞(∂+SM) such that A+w ∈ C∞(∂SM). Clearly A+w is
invariant under α and thus by Theorem 5.3, there is a smooth function v defined
in a neighbourhood of φ(∂SM) such that v ◦ φ = w.



46 5. REGULARITY RESULTS FOR THE TRANSPORT EQUATION

Consider the map Ψ : SM → ∂−SM given by Ψ(x, v) = ϕτ(x,v)(x, v) and the

analogous one Ψ0 : M0 → ∂−SM0 using τ0. Note that w] = w ◦ α ◦ Ψ and that
φ ◦ α ◦Ψ = Ψ0|SM . Hence

w] = w ◦ α ◦Ψ = v ◦ φ ◦ α ◦Ψ = v ◦Ψ0|SM
and since v and Ψ0|SM are C∞ it follows that w] is C∞ as desired.

5.3. A general regularity result
chap4:section:attenuationgeneral

Let (M, g) be a non-trapping manifold with strictly convex boundary and let
A : SM → Cm×m be a smooth function.

We would like to study regularity results for solutions u : SM → Cm to equa-
tions of the form

Xu+Au = f

where f ∈ C∞(SM,Cm) and u|∂SM = 0. We shall show that under these conditions
u must be C∞.

As we have done before, consider (M, g) isometrically embedded in a closed
manifold (N, g) and we extend A smoothly to N . Under these assumptions A on
N defines a smooth cocycle over the geodesic flow ϕt of (N, g). The cocycle takes
values in the group GL(m,C) and is defined as follows: let C : SN×R→ GL(m,C)
be determined by the following matrix ODE along the orbits of the geodesic flow

d

dt
C(x, v, t) +A(ϕt(x, v))C(x, v, t) = 0, C(x, v, 0) = Id.

The function C is a cocycle:

C(x, v, t+ s) = C(ϕt(x, v), s)C(x, v, t)

for all (x, v) ∈ SN and s, t ∈ R.

Exercise 5.5. Prove the cocycle property by using uniqueness for ODEs and
the fact that ϕt is a flow.

G: Having this cocycle is just as convenient as having ϕt in all SN . We can
then reduce smoothness questions to τ ; a recurrent theme.

Consider a slightly larger manifold M0 engulfing M so that (M0, g) is still
non-trapping with strictly convex boundary and let τ0 be the exit time of M0.

G: add in preliminaries that non-trapping with strictly convex boundary is C2

open. Same for the simple manifolds. For non-trapping just use characteriza-
tion Xf > 0 for some smooth f .

Lemma 5.6. The function R : SM → GL(m,C) defined by

R(x, v) := [C(x, v, τ0(x, v))]−1,

is smooth and satisfies
XR+AR = 0.

lemma:matrixintegrating

Proof. Since τ0|SM is smooth and the cocycle C is smooth, the smoothness
of R follows right away. To check that R satisfies the stated equation, we use that
τ0(ϕt(x, v)) = τ0(x, v)− t together with the cocycle property to obtain

R(ϕt(x, v)) = [C(ϕt(x, v), τ0(ϕt(x, v))]−1 = C(x, v, t)[C(x, v, τ0(x, v))]−1.
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Diiferentiating at t = 0 yields

XR = −AR
as desired.

�

Recall that in the scalar case, the attenuated ray transform Iaf of a function
f ∈ C∞(SM,C) with attenuation coefficient a ∈ C∞(SM,C) can be defined as the
integral

Iaf(x, v) :=

∫ τ(x,v)

0

f(ϕt(x, v))exp

[∫ t

0

a(ϕs(x, v)) ds

]
dt, (x, v) ∈ ∂+SM.

Alternatively, we may set Iaf := u|∂+SM where u is the unique solution of the
transport equation

Xu+ au = −f in SM, u|∂−SM = 0.

The last definition generalizes without difficulty to the case of a general at-
tenuation A. Let f ∈ C∞(SM,Cn) be a vector valued function and consider the
following transport equation for u : SM → Cn,

Xu+Au = −f in SM, u|∂−SM = 0.

On a fixed geodesic the transport equation becomes a linear ODE with zero final
condition, and therefore this equation has a unique solution denoted by uf .

Definition 5.7. The attenuated ray transform of f ∈ C∞(SM,Cn) is given
by

IAf := uf |∂+SM .
def:aXray

It is a simple task to write an integral formula for uf using a matrix integrating
factor as in Lemma 5.6.

Lemma 5.8. With R as in Lemma 5.6 we have

uf (x, v) = R(x, v)

∫ τ(x,v)

0

(R−1f)(ϕt(x, v)) dt for (x, v) ∈ SM.

lemma:formulau

Proof. A computation using XR−1 = R−1A (which follows easily from XR+
AR = 0) and Xuf +Auf = −f yields

X(R−1uf ) = (XR−1)uf +R−1uf = −R−1f.

Since R−1uf |∂−SM = 0, the lemma follows.
�

Remark 5.9. It is useful for future purposes, to understand how the formula
in the lemma changes, if we consider a different integrating factor, i.e. another
invertible matrix R1 satisfying XR1 +AR1 = 0. Since

X(R−1R1) = X(R−1)R1 +R−1X(R1) = R−1AR1 −R−1AR1 = 0

we derive

R1 = RW ]

where W = R−1R1|∂+SM .
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Lemma 5.8 shows that uf is in general as smooth as τ , i.e. smooth everywhere
except, perhaps at the glancing. However, the next result will show that if IAf = 0,
then uf is C∞.

Theorem 5.10 ([PSU12]). Let (M, g) be a non-trapping manifold with strictly
convex boundary. Let A ∈ C∞(SM,Cm×m) and f ∈ C∞(SM,Cm) be such that
IAf = 0. Then uf ∈ C∞(SM,Cm).thm:regularity_general

Proof. It is enough to show that the function r := R−1uf smooth. According
to Lemma 5.8, r satisfies

Xr = −R−1f in SM, r|∂SM = 0.

Choose h ∈ C∞(SM,Cm) such that Xh = −R−1f . We know such a function
exists either by appealing to Proposition 3.14 or by using the enlargement M0 of
M , extending R−1f smoothly to N and setting

h(x, v) =

∫ τ0(x,v)

0

(R−1f)(ϕt(x, v)) dt for (x, v) ∈ SM.

(τ0|SM is smooth.) Thus the function h − r satisfies X(h − r) = 0 and since
(h − r)|∂SM = h|∂SM ∈ C∞(∂SM,Cm), Theorem 5.1 gives that h − r is smooth
and thus r is smooth as desired.

�

5.4. The adjoint I∗A.

Let (M, g) be a non-trapping manifold with strictly convex boundary and let
A : SM → Cm×m be a smooth matrix attenuation. In this section we shall compute
the adjoint I∗A of

IA : L2(SM,Cm)→ L2
µ(∂+SM,Cm).

We endow Cm with its standard Hermitian inner product, so the L2 spaces are
defined using this inner product and the usual volume forms dΣ2n−1 and dµ.

Using the same arguments as in Proposition 4.8 one shows:

Proposition 5.11. The operator IA extends to a bounded operator

IA : L2(SM,Cm)→ L2
µ(∂+SM,Cm).

Moreover, the following stronger result holds: IA extends to a bounded operator

IA : L2(SM,Cm)→ L2(∂+SM,Cm).

Exercise 5.12. Prove the proposition.

Lemma 5.13. If R : SM → GL(m,C) is and such that XR+AR = 0, then

I∗Ah = (R∗)−1(R∗h)].

Proof. Recall that given R we can write

IAf = uf |∂+SM = R(x, v)

∫ τ(x,v)

0

(R−1f)(ϕt(x, v)) dt for (x, v) ∈ ∂+SM.
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Let us compute using Santaló’s formula:

(IAf, h) =

∫
∂+SM

〈IAf, h〉Cm dµ

=

∫
∂+SM

dµ

〈∫ τ

0

(R−1f)(ϕt(x, v)) dt,R∗h

〉
Cm

=

∫
∂+SM

dµ

∫ τ

0

〈
R−1f, (R∗h)]

〉
Cm (ϕt(x, v)) dt

=

∫
SM

〈
R−1f, (R∗h)]

〉
Cm dΣ2n−1

= (f, (R∗)−1(R∗h)])

and thus I∗Ah = (R∗)−1(R∗h)] as desired.
�

Remark 5.14. Observe that U = (R∗)−1 solves the matrix transport equation
XU − A∗U = 0 and since (R∗h)] is a first integral of the geodesic flow, f = I∗Ah
solves {

Xf −A∗f = 0,
f |∂+SM = h.

Remark 5.15 (The matrix weighted X-ray transform). Given a smooth matrix
weight W : SM → GL(m,C) we may also consider a closely related X-ray transform
with a matrix weight:

IW f :=

∫ τ

0

(Wf)(ϕt(x, v)) dt.

Clearly
IAf = RIR−1f

where R is any integrating factor so that XR+AR = 0.
The adjoint I∗W : L2

µ(∂+SM,Cm) → L2(SM,Cm) is easily computed as above
to obtain

I∗Wh = W ∗h].
remark:equiv_inj





CHAPTER 6

Vertical Fourier Analysis

G: This needs to be expanded, but the core is here.

Given functions u, v : SM → C we consider the L2 inner product and norm

(u, v) =

∫
SM

uv̄ dΣ3, ‖u‖ = (u, u)1/2.

Since X,X⊥, V are volume preserving we have (V u, v) = −(u, V v) for u, v ∈
C∞(SM), and if additionally u|∂SM = 0 or v|∂SM = 0 then also (Xu, v) =
−(u,Xv) and (X⊥u, v) = −(u,X⊥v).

The space L2(SM) decomposes orthogonally as a direct sum

L2(SM) =
⊕
k∈Z

Hk

where Hk is the eigenspace of −iV corresponding to the eigenvalue k. A function
u ∈ L2(SM) has a Fourier series expansion

u =

∞∑
k=−∞

uk,

where uk ∈ Hk. Also ‖u‖2 =
∑
‖uk‖2, where ‖u‖2 = (u, u)1/2. The even and odd

parts of u with respect to velocity are given by

u+ :=
∑
k even

uk, u− :=
∑
k odd

uk.

In the (x, θ)-coordinates previously introduced using isothermal coordinates we may
write

uk(x, θ) =

(
1

2π

∫ 2π

0

u(x, t)e−ikt dt

)
eikθ = ũk(x)eikθ.

Observe that for k ≥ 0, uk may be identified with a section of the k-th tensor
power of the canonical line bundle; the identification takes uk into ũke

kλ(dz)k

where z = x1 + ix2.
The next definition introduces holomorphic and antiholomorphic functions with

respect to the θ variable.

Definition 6.1. A function u : SM → C is said to be (fibre-wise) holomorphic
if uk = 0 for all k < 0. Similarly, u is said to be (fibre-wise) antiholomorphic if
uk = 0 for all k > 0.definition:fhol

Remark 6.2. Later on we will be dealing with situations where we have both
types of holomorphicity, namely, the fibre-wise described above (vertical) and holo-
morphicity due to the underlying Riemann surface structure of (M, g) (horizontal,

51
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variable “z” above in isothermal coordinates). In most cases the type of holomor-
phicity is given by the context, but if necessary we might the use the word fibre-wise
to indicate that we mean the one in Definition 6.1.

Let Ωk := Hk ∩C∞(SM). As in [GK80] we introduce the following first order
operators

η+, η− : C∞(SM,C)→ C∞(SM,C)

given by
η+ := (X + iX⊥)/2, η− := (X − iX⊥)/2.

Clearly X = η+ + η−. From the structure equations for the frame {X,X⊥, V } one
easily derives:

Lemma 6.3. The following bracket relations hold

[η±, iV ] = ±η±, [η+, η−] =
iK

2
V.

lemma:bracketseta

Exercise 6.4. Prove the lemma.

Lemma 6.5. We have

η+ : Ωk → Ωk+1, η− : Ωk → Ωk−1, (η+)∗ = −η−.

Proof. We only prove the first statement, the others are left are simple exer-
cises. Take u ∈ Ωk. Using the bracket relation [η+, iV ] = η+ we derive

η+(iV u)− iV η+u = η+u.

Since iV u = −ku we derive

−iV η+u = (k + 1)η+u

thus showing η+u ∈ Ωk+1.
�

Exercise 6.6. Show that X maps even functions to odd functions and odd
functions to even functions.

Finally using the expressions (3.4), (3.9) we can derive analogous expression
for η±:

Lemma 6.7. In isothermal coordinates (x1, x2) we can write the operators η±
as

η+ = e−λeiθ
(
∂

∂z
+ i

∂λ

∂z

∂

∂θ

)
, η− = e−λe−iθ

(
∂

∂z̄
− i∂λ

∂z̄

∂

∂θ

)
.

In particular

eq:etapluseq:etaplus (6.1) η+(heikθ) = e(k−1)λ∂(he−kλ)ei(k+1)θ,

eq:etaminuseq:etaminus (6.2) η−(heikθ) = e−(1+k)λ∂(hekλ)ei(k−1)θ,

where h = h(x1, x2) and

∂̄ =
1

2

(
∂

∂x1
+ i

∂

∂x2

)
,

∂ =
1

2

(
∂

∂x1
− i ∂

∂x2

)
.
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Exercise 6.8. Prove the lemma using (3.4), (3.9) and the definitions of η±.

The Riemannian metric g makes M naturally into a Riemannan surface. The
cotangent bundle T ∗M of M turns into a complex line bundle over M denoted
by κ and known as the canonical line bundle. The sections of this bundle consist
of (1, 0)-forms and locally have the form w(z)dz. The conjugate bundle κ is the
complex line bundle obtained by letting the complex numbers act by multiplication
by their conjugates. The sections of κ are the (0, 1)-forms and locally have the form
w(z)dz̄.

Lemma 6.9. For k ≥ 0, elements in Ωk can be identified with smooth sections
of the bundle κ⊗k. Similarly, for k ≤ 0, elements in Ωk can be identified with
smooth sections of the bundle κ⊗−k

Proof. We only consider the proof for k ≥ 0, leaving the case k ≤ 0 as an
exercise. Let Γ(M,κ⊗k) denote the space of smooth sections of the k-th tensor
power of the canonical line bundle κ. Given a metric g on M , there is map

ϕg : Γ(M,κ⊗k)→ Ωk

given by restriction to SM . In other words, an element f ∈ Γ(M,κ⊗k) gives rise
to a function in SM simply by setting fx(v, . . . , v︸ ︷︷ ︸

k

). Let us check what this map

looks like in isothermal coordinates. An element of Γ(M,κ⊗k) is locally of the form
w(z)dzk. Consider a tangent vector ż = ẋ1 + iẋ2. It has norm one in the metric g
iff eiθ = eλż. Hence the restriction of w(z)dzk to SM is

w(z)e−kλeikθ.

Observe that ϕg is surjective because given u ∈ Ωk we can write it locally as
u = heikθ and the local sections hekλ(dz)k glue together to define an element in
Γ(M,κ⊗k). Since it is clearly injective, ϕg is a complex linear isomorphism.

�

Exercise 6.10. Check that in the proof above, the local sections hekλ(dz)k

glue together to define an element in Γ(M,κ⊗k).

Using the identification from the lemma, we can explicitly conjugate η− to a
∂-operator. Observe that there is also a restriction map

ψg : Γ(M,κ⊗k ⊗ κ̄)→ Ωk−1

which is an isomorphism. The restriction of w(z)dzk ⊗ dz̄ to SM is

w(z)e−(k+1)λei(k−1)θ,

because e−iθ = eλ ¯̇z.
Given any holomorphic line bundle ξ over M , there is a ∂-operator defined on:

∂ : Γ(M, ξ)→ Γ(M, ξ ⊗ κ̄).

In particular we can take ξ = κ⊗k. Combining this with (6.2) we derive the following
commutative diagram:
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Γ(M,κ⊗k)
ϕg−−−−→ Ωky∂ yη−

Γ(M,κ⊗k ⊗ κ̄)
ψg−−−−→ Ωk−1

In other words:

eq:formetaeq:formeta (6.3) η− = ψg ∂ ϕ
−1
g .

G: what else should we include here? Since we are not going to discuss closed
surfaces maybe there is no point discussing Riemann-Roch etc. Perhaps the
anti-canonical line bundle κ−1 = κ∗? The case k ≤ 0?

6.1. The fibrewise Hilbert transform

We will also employ the fiberwise Hilbert transform H : C∞(SM)→ C∞(SM),
defined in terms of Fourier coefficients as

Huk := −i sgn(k)uk.

Here sgn(k) is the sign of k, with the convention sgn(0) = 0. Thus, u is holomorphic
iff (Id− iH)u = u0 and antiholomorphic iff (Id + iH)u = u0.

The following commutator formula for the Hilbert transform and the geodesic
vector field, proved in [PU05], has been a crucial component for many of the recent
developments in 2D geometric inverse problems.

prop:hxcommutator Proposition 6.11. Let (M, g) be a two dimensional Riemannian manifold.
For any smooth function u on SM we have the identity

[H,X]u = X⊥u0 + (X⊥u)0

where

u0(x) =
1

2π

∫
Sx

u(x, v) dSx

is the average value.

Proof. It suffices to show that

[Id + iH,X]u = iX⊥u0 + i(X⊥u)0.

Since X = η+ + η− we need to compute [Id + iH, η±], so let us find [Id + iH, η+]u,
where u =

∑
k uk. Recall that (Id + iH)u = u0 + 2

∑
k≥1 uk. We find:

(Id + iH)η+u = η+u−1 + 2
∑
k≥0

η+uk,

η+(Id + iH)u = η+u0 + 2
∑
k≥1

η+uk.

Thus
[Id + iH, η+]u = η+u−1 + η+u0.

Similarly we find
[Id + iH, η−]u = −η−u0 − η−u1.

Therefore using that iX⊥ = η+ − η− we obtain

[Id + iH,X]u = iX⊥u0 + i(X⊥u)0
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as desired. �

Exercise 6.12. Let S be the holomorphic projection operator, i.e. Su =∑∞
k=0 uk. Show that

[X,S]u = η−u0 − η+u−1.

6.2. Relationship between symmetric tensors and functions on SM

Let (M, g) be any compact Riemannian manifold. We denote by C∞(Sm(T ∗M))
the set of smooth complex-valued covariant symmetric tensors of rank m. There is
natural map

`m : C∞(Sm(T ∗M))→ C∞(SM)

given by

`m(h)(x, v) = hx(v, . . . , v︸ ︷︷ ︸
m

).

The Levi-Civita connection ∇ acts on a tensor h of rank m as follows:

∇h(Z, Y1, . . . , Ym) = Zh(Y1, . . . , Ym)−
m∑
i=1

h(Y1, . . . ,∇ZYi, . . . , Ym).

However, if h is symmetric, ∇h is in general not symmetric. By composing with
the symmetrization map σ of a tensor we obtain a map

d := σ ◦ ∇ : C∞(Sm(T ∗M))→ C∞(Sm+1(T ∗M)).

G: Perhaps use ds so we can distinguish this operator from the exterior deriva-
tive d?

The next lemma shows that the maps `m intertwine d and X:

Lemma 6.13. For any p ∈ C∞(Sm−1(T ∗M)) we have X`m−1p = `mdp.lemma:Xd

Proof. By definition

`m(dp)(x, v) = (dp)x(v, . . . , v) = (∇p)x(v, . . . , v)

since all entries in the tensor ∇p are the same and hence symmetrization is innocu-
ous. Since ∇γ̇x,v γ̇x,v = 0, we have

`m(dp)(x, v) =
d

dt

∣∣∣∣
t=0

pγx,v(t)(γ̇x,v(t), . . . , γ̇x,v(t)) = X`mp.

�

Suppose now that dimM = 2. We would like to understand the relationship
between the maps `m and the vertical Fourier decomposition introduced above.

We begin observing:

Lemma 6.14. Given h ∈ C∞(Sm(T ∗M)), the function `m ∈ C∞(SM) has

(`mh)k = 0, for |k| ≥ m+ 1.

Moreover, if m is even (resp. odd), `mh is an even (resp. odd) function of SM .lemma:finitedegree

Proof. Indeed, observe that `mh is a trigonometric polynomial of degree ≤ m,
hence all its Fourier coefficients are zero for |k| ≥ m+1. The last claim is ovious. �
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Proposition 6.15. Let m = 2N be even. Then the map

`m : C∞(Sm(T ∗M))→
i=N⊕
i=−N

Ω2i

is a linear isomorphism. Similarly, if m = 2N + 1 is odd, the map

`m : C∞(Sm(T ∗M))→
i=N⊕

i=−N−1

Ω2i+1

is a linear isomorphism.proposition:elliso

Proof. We do the proof for m even; the proof for m odd is analogous. Clearly
`m is injective, since any covariant symmetric m-tensor is determined by its values
on m-tuples of the form (v, . . . , v). Hence we need to show it is also surjective.

Suppose that we are given a smooth real-valued function f ∈ C∞(SM) such
that fk = 0 for |k| ≥ m + 1. Since f is real-valued f̄k = f−k. For each k ≥ 1,
the function f−k +fk gives rise to a unique real-valued symmetric k-tensor Fk such
that `kFk = f−k + fk. This can be seen as follows: recall that a smooth element
fk can be identified with a section of κ⊗k hence, its real part defines a symmetric
k-tensor. (For k = 0, f̄0 = f0 is obviously a real-valued 0-tensor.) More explicitly,

in the coordinates (x, θ), given fk = f̃ke
ikθ we define

Fk := 2<(f̃ke
kλ(dz)k).

It is straightforward to check that these local expressions glue together to give a
real-valued symmetric k-tensor whose restriction to SM is f−k + fk.

By tensoring with the metric tensor g and symmetrizing it is possible to raise
the degree of a symmetric tensor by two. Hence if σ denotes symmetrization,
αFk := σ(Fk ⊗ g) will be a symmetric tensor of degree k + 2 such that `k+2αFk is
again fk + f−k since g restricts as the constant function 1 to SM . Now consider
the symmetric m-tensor

F :=

m/2∑
i=0

αiFm−2i.

It is easy to check that `mF = f and thus `m is surjective.
�

6.3. Pestov and Guillemin-Kazhdan energy identities.

We conclude this chapter by discussing the relation between two basic energy
identities. On the one hand, we have the Pestov identity from Proposition 4.12 and
on the other hand we have the following simple lemma:

lemma_gk_energy_identity Lemma 6.16. Let (M, g) be a compact oriented Riemannian surface with pos-
sibly non-empty boundary. Then

‖η−u‖2 = ‖η+u‖2 −
i

2
(KV u, u), u ∈ C∞(SM) with u|∂SM = 0.

Proof. Lemma 6.3 gives the commutator formula

[η+, η−] =
i

2
KV.



6.3. PESTOV AND GUILLEMIN-KAZHDAN ENERGY IDENTITIES. 57

This implies that, for u ∈ C∞(SM) with u|∂SM = 0

‖η−u‖2 = ‖η+u‖2 + ([η−, η+]u, u) = ‖η+u‖2 −
i

2
(KV u, u). �

We now show that the Pestov identity applied to u ∈ Ωk is just the Guillemin-
Kazhdan identity in Lemma 6.16 for u ∈ Ωk with u|∂SM = 0. Indeed, we compute

‖V Xu‖2 = ‖V η+u‖2 + ‖V η−u‖2 = (k + 1)2‖η+u‖2 + (k − 1)2‖η−u‖2

and

‖XV u‖2−(KV u, V u)+‖Xu‖2 = k2(‖η+u‖2+‖η−u‖2)+ik(KV u, u)+‖η+u‖2+‖η−u‖2.
The Pestov identity and simple algebra show that

2k(‖η+u‖2 − ‖η−u‖2) = ik(KV u, u)

This is the Guillemin-Kazhdan identity if k 6= 0.
In the converse direction, assume that we know the Guillemin-Kazhdan identity

for each Ωk,

‖η+uk‖2 − ‖η−uk‖2 =
i

2
(KV uk, uk), u ∈ Ωk with u|∂SM = 0.

Multiplying by 2k and summing gives∑
2k(‖η+uk‖2 − ‖η−uk‖2) =

∑
ik(KV uk, uk).

On the other hand, the Pestov identity for u =
∑∞
k=−∞ uk reads∑

k2‖η+uk−1 + η−uk+1‖2

=
∑

(‖η+(V uk−1) + η−(V uk+1)‖2 + ik(KV uk, uk) + ‖η+uk−1 + η−uk+1‖2).

Notice that

k2‖η+uk−1 + η−uk+1‖2 = k2(‖η+uk−1‖2 + ‖η−uk+1‖2) + 2k2Re(η+uk−1, η−uk+1)

and

‖η+(V uk−1) + η−(V uk+1)‖2 + ‖η+uk−1 + η−uk+1‖2

= (k2 − 2k+ 2)‖η+uk−1‖2 + (k2 + 2k+ 2)‖η−uk+1‖2 + 2k2Re(η+uk−1, η−uk+1).

Thus the Pestov identity is equivalent with∑[
(2k − 2)‖η+uk−1‖2 − (2k + 2)‖η−uk+1‖2

]
=
∑

ik(KV uk, uk).

This becomes the summed Guillemin-Kazhdan identity after relabeling indices.
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Optimal stability
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CHAPTER 8

Microlocal aspects, surjectivity of I∗0

Here we include proofs of the ΨDO nature of I∗0 I0. We might consider doing
boundary behaviour (work with François and Richard), although the transmission
condition might be too technical. Stability estimates.

8.1. The normal operator

Let (M, g) be a non-trapping manifold with strictly convex boundary. Recall
from Chapter 4, that the adjoint of I : L2(SM)→ L2

µ(∂+SM) is given by I∗h = h].
If we let I0 = I ◦ `0, then

(I∗0h)(x) =

∫
SxM

h](x, v) dSx(v).

Using this we can easily derive an integral expression for the normal operator

N := I∗0 I0 : L2(M)→ L2(M).

Indeed from the definitions∫
SxM

(I0f)](x, v) dSx(v) =

∫
SxM

dSx(v)

∫ τ(x,v)

−τ(x,−v)

f(γx,v(t)) dt.

Thus

(N f)(x) =

∫
SxM

dSx(v)

∫ τ(x,v)

0

f(γx,v(t)) dt+

∫
SxM

dSx(v)

∫ 0

−τ(x,−v)

f(γx,v(t)) dt

and after performing the change of variables (v, t) 7→ (−v,−t) in the second integral
we derive

eq:formulaNeq:formulaN (8.1) (N f)(x) = 2

∫
SxM

dSx(v)

∫ τ(x,v)

0

f (γx,v(t)) dt.

Theorem 8.1. Let (M, g) be a simple manifold. Then N = I∗0 I0 is an elliptic
pseudo-differential operator (ΨDO) on M int of order −1.thm:psidoN

Proof. From the Schwartz kernel theorem, we know that the operator given
by (8.1) must have a Schwartz kernel K(x, y) so that

eq:NSKeq:NSK (8.2) (N f)(x) =

∫
M

f(y)K(x, y) dV n(y).

For general operators, K could be very singular, in general it is just a distribution on
M int×M int, but ΨDOs are characterized by having kernels of a very special type,
namely K is what is called a conormal distribution with respect to the diagonal of
M int×M int. This means that it is smooth off the diagonal and at the diagonal, it
has a singularity of a special type which is well understood.
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G:amplify? refer to Hörmander Vol 3, or perhaps Melrose?

Our first task is then to try to find out what K looks like. Another glance at
(8.1) suggests how to proceed: we would like to switch variables from (v, t) ∈ D :=
SxM × (0, τ(x, v)) to y ∈ M int while keeping x ∈ M int fixed. Thus we introduce
the map

ψx : D →M int

given by

ψx(v, t) := γx,v(t) = π ◦ ϕt(x, v).

The manifold D carries the metric gx+dt2 and volume form dSx∧dt, so we consider
naturally the quantity

Ax(v, t) := |det d(v,t)ψx|
where d(v,t)ψx : TvSxM × R→ TxM and the determinant is taken with respect to
the relevant volume forms. This is an ubiquitous quantity in Riemannian Geometry
as it dictates how to compute the volume of balls in M of radius r by integrating
over SxM × [0, r]. It can be easily described in terms of Jacobi fields as follows: if
we let {e1 = v, e2, . . . , en} be an orthonormal basis of TxM and we let Ji be the

Jacobi field with initial conditions Ji(0) = 0 and J̇i(0) = ei, then

Ax(v, t) :=
√

det(〈Ji(t), Jj(t)〉)2≤i,j≤n.

If the manifold M is simple, the function Ax > 0 for all (x, v) ∈ D and moreover,
ψx is a diffeomorphism onto M int \ {x}. Under these conditions, we can changeG: this needs

proof given our
definition of sim-
ple manifold,
Chapter 2

G: this needs
proof given our
definition of sim-
ple manifold,
Chapter 2

variables in (8.1) and obtain

(N f)(x) =

∫
M

f(y)

Ax(ψ−1
x (y))

dV n(y),

and thus we can identify K with

K(x, y) =
2

Ax(ψ−1
x (y))

.

Clearly for x 6= y this is a smooth function since Ax and ψx are smooth, and both
depend smoothly on x.

To gain further insight into the singularity of K at x = y and the ΨDO nature
of N , let us suppose that (M, g) that is a strictly convex domain in Euclidean space
Rn. In this case Ax(v, t) = tn−1 and ψx(v, t) = x+ vt. Thus

K(x, y) =
2

|x− y|n−1
.

It follows that

N f = 2f ∗ 1

|x|n−1
.

where f is extended by zero outside M and ∗ stands for convolution in Rn. If we
let F be Fourier transform, standard properties give

N f = 2F−1F
(
f ∗ 1

|x|n−1

)
= 2F−1

(
F(f)F

(
1

|x|n−1

))
and it is well known that

F
(

1

|x|n−1

)
= cn|ξ|−1,
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where cn is some constant. Hence we can write

N f = 2cnF−1(F(f)|ξ|−1) =

∫ ∫
eiξ·(x−y)p(x, ξ)f(y) dy dξ.

This is precisely the formula that describes N as a ΨDO with symbol p(x, ξ) =
2cn|ξ|−1. The fact that the symbol has this form means that N has order −1 and
is elliptic.

For a general simple metric g, pretty much the same picture holds, but we need
to work a little harder to derive it. First we elucidate the behaviour of Ax(v, t) at
t = 0. This is easy if we introduce the exponential map given by expx : TxM →M ,
expx(tv) = ψx(v, t). At first it seems we have not achieved much, but if we recall
that the polar coordinate change q : SxM × R → TxM , q(v, t) = tv has Jacobian
tn−1 then we see that

Ax(v, t) = |det(dtv expx)|tn−1.

Since d0 expx = id and t = d(x, y) we derive a Schwartz kernel of the form

eq:Ksingeq:Ksing (8.3) K(x, y) =
2

[d(x, y)]n−1|det dqψ−1
x (y) expx |

with singularity of type 1/[d(x, y)]n−1.
At this point we shall need the following lemma:

Lemma 8.2. In local coordinates, there are smooth functions Gij(x, y) such that
Gij(x, x) = gij(x) and

[d(x, y)]2 = Gij(x, y)(x− y)i(x− y)j .

Exercise 8.3. Prove the lemma. Hint: do a Taylor expansion at x of the
function f(y) = ‖exp−1

x (y)‖2.

To show that we have a ΨDO we need to localize matters by considering two
cut-off functions ψ(x) and φ(y) supported in charts of M int (since M is simple,
M int is in fact diffeomorphic to Rn, so one chart will do). If we let

K̃(x, y) := ψ(x)K(x, y)
√

det g(y)φ(y)

we need to show that the operator defined by K̃ is a ΨDO in Rn. (Recall that in

local coordinates dV n =
√

det g(y)dy.)

The lemma, together with (8.3), shows that in local coordinates, the kernel K̃
satisfies an estimate of the form

|∂αx ∂βy K̃(x, x− y)| ≤ Cα,β |y|−n+1−|β|.

This is the property needed to show that the symbol

p(x, ξ) =

∫
K̃(x, x− y)e−iξ·y dy

is a classical symbol of order −1. The last part of the proof consists in computing G: need to give
reference or add a
proof, perhaps as
a separate lemma?

G: need to give
reference or add a
proof, perhaps as
a separate lemma?

the principal symbol of N . This is the leading term in a suitable expansion of
p(x, ξ). If we let

G: add detailsG: add details
K̃0(x, y) :=

2ψ(x)
√

det g(x)φ(y)

(gij(x)(x− y)i(x− y)j)(n−1)/2
,
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then it is clear that K̃ − K̃0 will have a singularity of type |x− y|−n+2. Hence the

operators determined by K̃ and K̃0 share the same principal symbol and we infer
that the principal symbol is given (up to a constant) by∫

Rn

e−iξ·y
√

det g(x)

(gij(x)yiyj)(n−1)/2
dy.

Using that F
(

1
|x|n−1

)
= dn|ξ|−1 and a substitution shows that the principal symbol

of N is

cn|ξ|−1
g

and thus N is elliptic.
�

8.2. Surjectivity of I∗0

Let (M, g) be a compact simple manifold. In this section we prove a funda-
mental surjectivity result for I∗0 which underpins the successful solution of many
geometric inverse problems in 2D.

As usual, we consider (M, g) isometrically embedded into a closed manifold
(N, g). Since M is simple, there is an open neighborhood U1 of M in N , such that
its closure M1 := U1 is a compact simple manifold. Let I0,1 denote the geodesic
ray transform associated to (M1, g) and let N1 = I∗0,1I0,1.

Following [PU05] we may cover (N, g) with finitely many simple open sets
Uk with M ⊂ U1, M ∩ U j = ∅ for j ≥ 2, and consider a partition of unity {ϕk}
subordinate to {Uk} so that ϕk ≥ 0, suppϕk ⊂ Uk and

∑
ϕ2
k = 1. We pick ϕ1 such

that ϕ1 ≡ 1 on a neighborhood of M compactly supported in U1. Hence, for I0, k
the ray transform associated to (Uk, g), we can define

eq:Peq:P (8.4) Pf :=
∑
k

ϕk(I∗0,kI0,k)(ϕkf), f ∈ C∞(N).

Each operator I∗0,kI0,k : C∞c (Uk) → C∞(Uk) is an elliptic ΨDO of order −1 with

principal symbol cn|ξ|−1, and hence so is P . Having P defined on a closed manifoldG:Perhaps make
this into a lemma
and give a proof?
The squares in
the partition of
unity is to make
the principal
symbol come as
claimed but it is
not strictly neces-
sary

G:Perhaps make
this into a lemma
and give a proof?
The squares in
the partition of
unity is to make
the principal
symbol come as
claimed but it is
not strictly neces-
sary

is convenient, since one can use standard mapping properties for ΨDOs without
having to worry about boundary behaviour. For instance for P defined by (8.4) we
have

P : Hs(N)→ Hs+1(N) for all s ∈ R,
where Hs(N) denotes the standard L2 Sobolev space of the closed manifold N
(when s is a nonnegative integer, Hs(N) can be identified with the set of u ∈ L2(N)
such that Du ∈ L2(N) for all differential operators D of order ≤ s with coefficients
in C∞(N), see [Tay11] for the definition for arbitrary s ∈ R).

Remark 8.4. There are other natural ways of producing an ambient operator
P with the desired properties. Let ψ be a smooth function on N with support
contained in U1 and such that it is equal to 1 near M . Let ∆g denote the Laplacian
of (N, g). Define

P := ψN1ψ + (1− ψ)(1 + ∆g)
−1/2(1− ψ).

As we have already mentioned, N1 is an elliptic ΨDO of order −1 on U1 and thus
P is also an elliptic ΨDO of order −1 in N . Instead of (1 + ∆g)

−1/2 we could have
used any other invertible self-adjoint elliptic ΨDO of order −1.
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Lemma 8.5. The operator P is injective. Moreover, P : C∞(N)→ C∞(N) is
a bijection.lemma:Fred

Proof. Since P is elliptic, an element in the kernel of P must be smooth. Let
f be such that Pf = 0 and write

0 = (Pf, f)L2(N) =
∑
k

(Nk(ϕkf), ϕkf)L2(Uk)

=
∑
k

‖I0,k(ϕkf)‖L2
µ(∂+SUk).

Hence I0,k(ϕkf) = 0 for each k. Using injectivity of I0 on simple manifolds it
follows that ϕkf = 0 for each k and thus f = 0.

Since P is elliptic and self-adjoint, it has index zero. Thus injectivity implies
surjectivity and P is a bijection. G: We might wish

to give some back-
ground, certainly
some references.

G: We might wish
to give some back-
ground, certainly
some references.

�

We are now ready to prove the main result of this section.

Theorem 8.6. Let (M, g) be a simple manifold. Then the operator

I∗0 : C∞α (∂+SM)→ C∞(M)

is surjective.thm:I0*onto

Proof. Let h ∈ C∞(M) be given and extend it smoothly to a smooth function
in N , still denoted by h. By Lemma 8.5 there is a unique f ∈ C∞(N) such that

Pf = h. Let w1 := I0,1(ϕ1f). Clearly w]1|SM ∈ C∞(SM) and we let w := w]1|∂+SM .
We must have

w] = w]1|SM

since both are first integrals of the geodesic flow and they agree on ∂+SM . Hence
w ∈ C∞α (∂+SM). To complete the proof we must check that I∗0w = h. To this end,
we write for x ∈M :

(I∗0w)(x) =

∫
SxM

w](x, v) dSx(v)

=

∫
SxM

w]1(x, v) dSx(v)

= (I∗0,1w1)(x)

= I∗0,1I0,1(ϕ1f)(x)

= P (f)(x)

= h(x),

where in the penultimate line we used (8.4) and that x ∈M .
�
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8.3. Adding an invertible matrix weight

Virtually everything we have done in this section so far can be upgraded to
include an invertible matrix weight. Let (M, g) be a non-trapping manifold with
strictly convex boundary and let W : SM → GL(m,C) be a smooth invertible
matrix weight. Consider the geodesic X-ray transform with a matrix weight:

IW f :=

∫ τ

0

(Wf)(ϕt(x, v)) dt.

The adjoint I∗W : L2
µ(∂+SM,Cm)→ L2(SM,Cm) is (cf. Chapter 5):

I∗Wh = W ∗h].

If we let I0,W = IW ◦ `0, then

(I∗0,Wh)(x) =

∫
SxM

W ∗h](x, v) dSx(v).

Using this we can derive as before an integral expression for the normal operator

NW := I∗0,W I0,W : L2(M,Cm)→ L2(M,Cm).

Indeed from the definitions∫
SxM

(I0f)](x, v) dSx(v) =

∫
SxM

W ∗(x, v)dSx(v)

∫ τ(x,v)

−τ(x,−v)

W (ϕt(x, v))f(γx,v(t)) dt.

Thus

eq:formulaNWeq:formulaNW (8.5) (NW f)(x) =

∫
SxM

W ∗(x, v)

(∫ τ(x,v)

−τ(x,−v)

W (ϕt(x, v))f(γx,v(t)) dt

)
dSx(v).

Theorem 8.7. Let (M, g) be a simple manifold. Then NW = I∗0,W I0,W is an

elliptic pseudo-differential operator (ΨDO) on M int of order −1.thm:Welliptic

Proof. TODO. For matrix weights this non-where to be found in the literature
in this form. Of course the ideas are the same but the weight creates additional
work. The integral in (8.5) has to be splitted in two corresponding to positive times
and negative times. For each one we compute the kernel. For the positive we get
something like the old stuff times

W ∗(x, h(x, y))W (y, dh(x,y) expx(h(x, y))

where

h(x, y) :=
exp−1

x (y)

| exp−1
x (y)|

.

Hence we need to work a little more analyzing the singularity at the diagonal.
For the scalar case this has been done of course and there are several references.
The book project by Gunther and Plamen has a nice section discussing this in the
Euclidean case. For the matrix case we dodged the bullet in IMRN, but something
similar appears in the AMJ paper with Hanming.

G: I think we should do this in detail once and for all

�

With this result in hand, Theorem 8.6 can be upgraded to:
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Theorem 8.8. Let (M, g) be a simple manifold. Then I0,W is injective on
L2(M,Cm) if and only if

I∗0,W : C∞α (∂+SM,Cm)→ C∞(M,Cm)

is surjective.thm:I0W*onto

Proof. Let f ∈ L2(M,Cm) be such that I0,W f = 0. Consider a slightly larger

simple manifold M̃ engulfing M and extend W smoothly to it. Extending f by zero

to M̃ we see that
I
0,W̃

f = 0

and thus N
W̃
f = 0. By Theorem 8.7, N

W̃
is elliptic and hence f is smooth in the

interior of M̃ and hence on M . Assume now that I∗0,W is surjective. Then there

exists h ∈ C∞α (∂+SM,Cm) such that I∗0,Wh = f . Now write

0 = (I0,W f, h) = (f, I∗0,Wh) = (f, f)

and thus f = 0.
Assume now that I0,W is injective. We wish to show that I∗0,W is surjective.

This part of the proof proceeds exactly as the proof of Theorem 8.6. We construct
an elliptic operator P : C∞(N,Cm)→ C∞(N,Cm) and we show it is a bijection by
showing first that it has trivial kernel. The surjectivity of P implies the surjectivity
of I∗0,W exactly as in the proof of Theorem 8.6.

�

Exercise 8.9. Fill in the details in the proof of Theorem 8.8.

Let us state explicitly the following rephrasing of Theorem 8.8 that shall be
very useful later on.

Corollary 8.10. Let (M, g) be a simple manifold with I0,W injective. Given
f ∈ C∞(M,Cm) there exists u ∈ C∞(SM,Cm) such that{

Xu+Au = 0,
u0 = f

where A = −X(W ∗)(W ∗)−1 and u0 = `∗0u =
∫
SxM

u(x, v) dSx(v).
cor:transportA

Proof. By Theorem 8.8 there is h ∈ C∞α (∂+SM,Cm) such that (W ∗h])0 = f .
We let u := W ∗h] ∈ C∞(SM,Cm). Since Xh] = 0, the function u satisfies

Xu = X(W ∗)h] = −Au
and the corollary follows.

�





CHAPTER 9

Inversion formulas and range

This chapter summarizes the inversion formulas and range from Pestov-Uhlmann.
Discussion of the operator W , open problems. Range for tensors as in IMRN paper.
One could add a connection as we did with François recently. Here it might makes
sense to discuss François numerical work briefly; having nice pictures will certainly
enhance the book!

9.1. The derivative cocycle in 2D

Let (N, g) be a closed oriented Riemannian surface. The usual Jacobi equation
ÿ +K(t)y = 0 determines the differential of the geodesic flow ϕt: if we fix (x, v) ∈
SM and T(x,v)(SM) 3 ξ = −ξ1X⊥ + ξ2V then

dϕt(ξ) = −y(t)X⊥(ϕt(x, v)) + ẏ(t)V (ϕt(x, v)),

where y(t) is the unique solution to the Jacobi equation with initial conditions
y(0) = ξ1 and ẏ(0) = ξ2 and K(t) = K(π ◦ ϕt(x, v)). The differential of the
geodesic flow determines an SL(2,R)-cocyle Ψ over ϕt with infinitesimal generator:

A :=

(
0 −1
K 0

)
.

We may write Ψ as

Ψ(x, v, t) =

(
a b

ȧ ḃ

)
where the functions a, b : SN ×R→ R satisfy the Jacobi equation in the t-variable
and a(x, v, 0) = 1, ȧ(x, v, 0) = 0 and b(x, v, 0) = 0, ḃ(x, v, 0) = 1. Clearly the
cocycle Ψ can be identified with dϕt acting on the kernel of the contact 1-form of
the geodesic flow (i.e. the 2-plane spanned by X⊥ and V ).

G: Complement this section with 4.2 on the Jacobi equations in the notes with
Will (that can be copied almost verbatim keeping in mind H = −X⊥ or bring
onto section 2 in preliminaries.

The functions a, b have the following expansions around t = 0:

Proposition 9.1. There exist smooth functions R(x, v, t) and P (x, v, t) such
that

a(x, v, t) = 1−K(x)
t2

2
− dxK(v)

t3

6
+ t4R(x, v, t),eq:aexpeq:aexp (9.1)

b(x, v, t) = t−K(x)
t3

6
+ t4P (x, v, t).eq:bexpeq:bexp (9.2)

69
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Moreover, if we consider Taylor expansions at t = 0 up to order N :

a(x, v, t) =

N∑
k=0

ak(x, v)tk +O(tN+1),

b(x, v, t) =

N∑
k=0

bk(x, v)tk +O(tN+1),

then ak(x, v) is the restriction to SM of a symmetric tensor of order k and bk(x, v)
is the restriction to SM of a symmetric tensor of order k − 1.prop:ab

Proof. Equations (9.1) and (9.2) follow right away from the Taylor expansion
using the differential equation ÿ +Ky = 0 and the initial conditions for a and b.

By differentiating the equation ÿ +Ky = 0 repeatedly we obtain:

eq:kk+2eq:kk+2 (9.3) ak+2(x, v) = −
k∑
i=0

d(i, k)Xi(K)(x, v)ak−i(x, v)

for some coefficients d(i, k) whose precise value is irrelevant for us. We can now
show the claim about the functions ak by induction on k. Indeed for k = 0, a0 = 1,
so assume that ak−i is the restriction to SM of a symmetric tensor of order k − i.
Since K only depends on x, Xi(K) is also the restriction to SM of a symmetric
tensor of order i. Hence using (9.3) we see that ak+2 is the restriction to SM of a
symmetric tensor of order k + 2. The proof for bk is analogous.

�

9.2. The smoothing operator W

G: We have too many W ’s scattered throughout the text, eventually we will
need to polish the notation.

Let (M, g) be a non-trapping surface with strictly convex boundary. We con-
sider as usual (M, g) sitting inside a closed oriented surface (N, g).

We shall define an operator W : C∞c (M int) → C∞(M), where C∞c (M int)
denotes the space of C∞ functions with compact support inside the interior of
M . This operator will have the property that it extends as a smoothing operator
W : L2(M) → C∞(M) when M is free of conjugate points, and it will play an
important role in the Fredholm inversion formulas in the next section.

Given f ∈ C∞c (M int) define for x ∈M .

(Wf)(x) := (X⊥u
f )0(x) = `0(X⊥u

f )(x).

Observe that since f has compact support contained in the interior of M , then
function uf ∈ C∞(SM) and thus Wf ∈ C∞(M). This is the way W was introduced
in [PU04], however we note that we can just as well define W : C∞(M)→ C∞(M).

This is because while uf might be smooth at the glancing, the odd part uf− of uf

actually belongs to C∞(SM) so we could simply set

Wf := (X⊥u
f
−)0.

and the two definitions clearly agree on C∞c (M int).

Exercise 9.2. Prove that uf− ∈ C∞(SM).
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G: Perhaps we should set this exercise as a lemma in the chapter on regularity?

Exercise 9.3. Show that Wf = i(η−u
f
1 − η+u

f
−1).

We now give an integral representation for W when (M, g) is a simple surface.
We will use the functions a, b introduced in the previous section in the context of
the derivative cocycle. Note that (M, g) has no conjugate points iff b(x, v, t) 6= 0
for t ∈ [−τ(x,−v), τ(x, v)], t 6= 0 and (x, v) ∈ SM .

Proposition 9.4. Let (M, g) be a simple surface. The function w(x, v, t) :=

V
(
a(x,v,t)
b(x,v,t)

)
is smooth on the set of (x, v, t) such that (x, v) ∈ SM and t ∈

[−τ(x,−v), τ(x, v)]. Moreover,

(Wf)(x) =
1

2π

∫
SxM

∫ τ(x,v)

0

w(x, v, t)f(γx,v(t)) dtdSx(v).

Proof. For the first part we just need to study the smoothness of w near
t = 0. Using (9.1) and (9.2) we see that

w(x, v, t) =
V (a)

b
− aV (b)

b2
=
t2(−V (dxK(v))/6 + tV R)

1−K(x)t2/6 + t3P
− at2V R

(1−K(x)t2/6 + t3P )2

and thus w(x, v, t) is smooth.
To derive the integral formula for W we just use its definition and write

eq:W1eq:W1 (9.4) (Wf)(x) =
1

2π

∫
SxM

X⊥

∫ τ(x,v)

0

f(γx,v(t)) dtdSx(v).

Since f has compact support contained in the interior of M :

X⊥

∫ τ(x,v)

0

f(γx,v(t)) dt =

∫ τ(x,v)

0

X⊥(f(γx,v(t))) dt.

Now observe that

X⊥(f(γx,v(t))) = df ◦ dπ ◦ dϕt(X⊥(x, v))

and similarly

V (f(γx,v(t))) = df ◦ dπ ◦ dϕt(V (x, v)).

But

dπ ◦ dϕt(X⊥(x, v)) = −aiγ̇x,v(t)
and

dπ ◦ dϕt(V (x, v)) = biγ̇x,v(t),

therefore

X⊥(f(γx,v(t)) = −a
b
V (f(γx,v(t)).

Inserting the last expression into (9.4) we derive

(Wf)(x) =
1

2π

∫
SxM

∫ τ(x,v)

0

−a
b
V (f(γx,v(t))) dtdSx(v)

and since ∫
SxM

V

(∫ τ(x,v)

0

a

b
f(γx,v(t)) dt

)
dSx(v) = 0
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we finally obtain

(Wf)(x) =
1

2π

∫
SxM

∫ τ(x,v)

0

V
(a
b

)
f(γx,v(t)) dtdSx(v)

as desired.
�

Remark 9.5. The proof above was done assuming that f ∈ C∞c (M int) but we
could have carried out the same proof with f ∈ C∞(M), i.e. smooth and supported
all the way to the boundary. This would have produced two additional boundary

terms X⊥(τ)f(γx,v(τ(x, v)) and V (τ)a(x,v,τ(x,v))
b(x,v,τ(x,v)) f(γx,v(τ(x, v)). However these two

terms cancel out due to the following fact that is easily checked:

eq:abtaueq:abtau (9.5) a(x, v, τ(x, v))V (τ) + b(x, v, τ(x, v))X⊥(τ) = 0.

Hence we get the same integral formula for f ∈ C∞(M).

Exercise 9.6. Prove identity (9.5).

We now analyze the kernel w in more detail.

Lemma 9.7. Let (M, g) be simple surface. Then

b(x, v, t) = t det(dtv expx).

Moreover, there exists Q ∈ C∞(TM) such that w(x, v, t) = tQ(x, tv).lemma:bQ

Proof. The first claim follows from what explained in the proof of Theorem
8.1 since in the notation of that proof Ax(v, t) = b(x, v, t).

The second claim is essentially a corollary of Proposition 9.1. Since ak and bk
are restrictions of symmetric tensors of order k and k − 1 respectively and V (ak)

and V (bk) have the same property, each one of the functions V (a)
b and aV (b)

b2 can
be written as tQ(x, tv) with Q smooth in TM . Thus w can also be written in this
form. �

G: Is there another proof of this?

Proposition 9.8. Let (M, g) be a simple surface. The operator W extends to
a smoothing operator W : L2(M)→ C∞(M).

Proof. We will make a change of variables that transforms the integral ex-
pression for W into something of the form

(Wf)(x) =

∫
M

k(x, y)f(y) dV 2(y)

with k smooth. The change of variables is exactly the same we used in the proof
of Theorem 8.1. Using the notation from that proof we set y = ψx(v, t) = expx(tv)
and we see that Ax(v, t) = b(x, v, t). Thus

(Wf)(x) =

∫
M

k(x, y)f(y) dV 2(y)

where

k(x, y) :=
w(x, ψ−1

x (y))

b(x, ψ−1
x (y))

.
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Using Lemma 9.7 we can re-write this as

k(x, y) =
Q(x, exp−1

x (y))

det(dexp−1
x (y) expx)

that clearly exhibits k as a smooth function.
�

9.2.1. The adjoint W ∗. The adjoint of W with respect to the L2-inner prod-
uct of M can be easily computed:

Lemma 9.9. Given h ∈ C∞c (M int) we have

W ∗h =
(
uX⊥h

)
0
.

Proof. TODO
�

9.3. Fredholm formulas

G: the next bit is the only one so far needing the Hilbert transform H and the
bracket [H,X].

Theorem 9.10. Let (M, g) be a non-trapping surface with strictly convex bound-
ary. Then given f ∈ C∞(M) we have

f +W 2f = −(X⊥w
])0

where

w :=
1

2
[H (I0f)−]|∂−SM ◦ α

and (I0f)− denotes the odd continuation of I0f to ∂SM .

Proof. The proof essentially consists in applying the Hilbert transform H

twice to the equation Xuf− = −f and use Proposition 6.11.
Applying H once we derive (Hf = 0):

eq:H1eq:H1 (9.6) XHuf− = −Wf

since (uf−)0 = 0. Applying H again we obtain

XH2uf− + (X⊥Hu
f
−)0 = 0

and using that H2uf− = −uf− we derive

eq:H2eq:H2 (9.7) −f = Xuf− = (X⊥Hu
f
−)0.

Using (9.6) we see that

Huf− = uWf + w]

where w := [Huf−]|∂−SM ◦ α ∈ C∞(∂+SM). Inserting this expression into (9.7)
yields

−f −W 2f = (X⊥w
])0

and the proof is completed by observing that

uf−|∂SM =
1

2
(I0f)−.

�

Exercise 9.11. Using (9.6) show that I0f = 0 iff I0(Wf) = 0.
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9.4. Range

9.5. Tensors

9.6. Tentative: adding a connection plus numerical work



CHAPTER 10

Tensor tomography

This chapter solves the tensor tomography problem for simple surfaces. We
shall in fact prove a stronger result in which the absence of conjugate points is
replaced by the assumption that I∗0 is surjective.

10.1. Holomorphic integrating factors

In this section we prove an important technical result about the existence of
certain solution of the transport equation Xu = a when a ∈ Ω−1 ⊕ Ω1 (i.e. a
represents a 1-form on M). This result will unlock the solution to several geometric
inverse problems in 2D.

Proposition 10.1 (Existence of holomorphic integrating factors, Part I). Let
(M, g) be a non-trapping surface with strictly convex boundary. Assume that I∗0 is
surjective. Given a−1 + a1 ∈ Ω−1 ⊕ Ω1, there exists w ∈ C∞(SM) such that w is
holomorphic and Xw = a−1 + a1. Similarly there exists w̃ ∈ C∞(SM) such that
w̃ is anti-holomorphic and Xw̃ = a−1 + a1.prop:holif

Proof. We do the proof for w holomorphic; the proof for w̃ anti-holomorphic
is analogous.

First we note that the equation η+f0 = −a1 can always be solved. Indeed this
is the case since it is equivalent to solving a ∂-equation on a disc:

η+f0 = e−λ∂(f0)eiθ = −ã1(x1, x2)eiθ

and so we just need to solve ∂(f0) = −eλã1 which is always possible by standard
complex analysis.

Since I∗0 is surjective, there exists q ∈ C∞(SM) such that Xq = 0 and q0 = f0.
Hence

eq:hol1eq:hol1 (10.1) X(q2 + q4 + · · · ) = η−q2 = −η+q0 = a1.

Next, we solve η−g0 = a−1 and use surjectivity of I∗0 to find p ∈ C∞(SM) such
that Xp = 0 and p0 = g0. Hence

eq:hol2eq:hol2 (10.2) X(p0 + p2 + · · · ) = η−p0 = a−1.

Combining (10.1) and (10.2) and setting w =
∑
k≥0 p2k +

∑
k≥1 q2k we see that w

is holomorphic and Xw = a−1 + a1.
�

10.2. Tensor tomography: version I

We begin with a simple observation that holds in any dimensions.

75
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Lemma 10.2. Let (M, g) be a non-trapping manifold with strictly convex bound-
ary. If I∗0 : C∞α (∂+SM)→ C∞(M) is surjective, then I0 : C∞(M)→ C∞(∂+SM)
is injective.lemma:I0inj

Proof. Suppose there is f ∈ C∞(M) with I0f = 0. Since I∗0 is sujective,
there is w ∈ C∞α (∂+SM) such that I∗0w = f , hence we can write

‖f‖2 = (f, I∗0w)L2(M) = (I0f, w)L2
µ(∂+SM) = 0

and thus f = 0.
�

The next result is the master result from which tensor tomography is derived.
It asserts, in terms of the transport equation, that I|Ωm : Ωm → C∞(∂+SM) is
injective whenever I∗0 is surjective.

Theorem 10.3. Let (M, g) be a non-trapping surface with strictly convex bound-
ary and I∗0 surjective. Let u ∈ C∞(SM) be such that

Xu = f ∈ Ωm, u|∂SM = 0.

Then u = 0 and f = 0.thm:tt1

Proof. Let r := e−imθ and observe that r−1Xr ∈ Ω−1 ⊕ Ω1 since

eimθη±(e−imθ) ∈ Ω±1.

By the previous proposition, there are w, w̃ ∈ C∞(SM) holomorphic and anti-
holomorphic respectively, such that Xw = Xw̃ = −r−1Xr. Without loss of gen-
erality we may assume that both w and w̃ are even. A simple calculation shows
that

eq:transport1eq:transport1 (10.3) X(ewru) = ewrf

with a similar equation for w̃. Since rf ∈ Ω0, ewrf is holomorphic and ew̃rf is
anti-holomorphic.

Assume now that m is even, the proof for m odd being very similar. Then we
may assume that u is odd and thus ewru and ew̃ru are odd. Let

q :=

−1∑
−∞

(ewru)k.

Using (10.3), the fact that ewrf is holomorphic and that q is odd we see that

Xq = η+q−1 ∈ Ω0, q|∂SM = 0.

(Note that u|∂SM = 0 iff uk|∂SM = 0 for all k.) Since we know that I0 is injective
(Lemma 10.2) we deduce that q = η+q−1 = 0. Hence ewru is holomorphic and
thus ru = e−w(ewru) is holomorphic. Arguing with w̃ we deduce that ru is also
anti-holomorphic and hence ru ∈ Ω0. This implies that u ∈ Ωm and using that
Xu ∈ Ωm we see that Xu = 0 and finally u = f = 0 as desired.

�

G:discuss what happens when r = he−imθ where h is non-zero

One can explicitly compute r−1Xr in the proof above using isothermal coordi-
nates in which the metric is e2λ(dx2

1 + dx2
2):
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Exercise 10.4. Show that

r−1Xr = mη+(λ)−mη−(λ).

By inspecting the proof of Proposition 10.1 show that the conclusion of Theorem
10.3 still holds if we assume that I0 is injective and there is a smooth q such that
Xq = 0 with q0 = λ. Hence surjectivity of I∗0 is only needed for the function λ!

Corollary 10.5. Let (M, g) be a non-trapping surface with strictly convex
boundary and I∗0 surjective. Let u ∈ C∞(SM) be such that

Xu = f, u|∂SM = 0.

Suppose fk = 0 for k ≥ m+ 1 for some m ∈ Z. Then uk = 0 for k ≥ m. Similarly,
if fk = 0 for k ≤ m− 1 for some m ∈ Z. Then uk = 0 for k ≤ m.

Proof. Suppose fk = 0 for k ≥ m + 1 for some m ≥ 0. Let v :=
∑∞
m uk.

Using the equation Xu = f and the hypothesis on f we see that

Xv = η−um + η−um+1 ∈ Ωm−1 ⊕ Ωm.

Applying Theorem 10.3 to the even and odd components of v we deduce that v = 0
and thus uk = 0 for k ≥ m. Similarly, arguing with

∑m
−∞ uk we deduce that uk = 0

for k ≤ m if fk = 0 for k ≤ m− 1.
�

The next corollary is an obvious consequence of the previous one.

Corollary 10.6 (Tensor tomography, Version I). Let (M, g) be a non-trapping
surface with strictly convex boundary and I∗0 surjective. Let u ∈ C∞(SM) be such
that

Xu = f, u|∂SM = 0.

Suppose fk = 0 for |k| ≥ m + 1 for some m ≥ 0. Then uk = 0 for |k| ≥ m (when
m = 0, this means u = f = 0).corollary:tt2

10.3. Tensor tomography: version II

Let (M, g) be a non-trapping manifold with strictly convex boundary. Using
the map

`m : C∞(Sm(T ∗M))→ C∞(SM)

we can define the geodesic X-ray transform acting on symmetric tensor of rank m
by setting

Im := I ◦ `m : C∞(Sm(T ∗M))→ C∞(∂+SM).

When m ≥ 1, this transform has a kernel. Indeed, if p ∈ C∞(Sm−1(T ∗M)) is such
that p|∂M = 0, then

Im(dp) = I(`mdp) = I(X`m−1p) = 0,

where we used Lemma 6.13.
Tensors of the form dp with p|∂M = 0 are called potential tensors.
The tensor tomography problem asks: given h ∈ C∞(Sm(T ∗M)) with Imh = 0,

is it true that h = dp where p ∈ C∞(Sm−1(T ∗M)) with p|∂M = 0?
We now give a positive answer to this question in the case of surfaces with I∗0

surjective.
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Theorem 10.7 (Tensor tomography, Version II). Let (M, g) be a non-trapping
surface with strictly convex boundary and I∗0 surjective. Given h ∈ C∞(Sm(T ∗M))
with Imh = 0, there exists p ∈ C∞(Sm−1(T ∗M)) such that h = dp and p|∂M = 0.

Proof. Let f := `mh. Since If = 0 we know that there exists u ∈ C∞(SM)
such that

Xu = f, u|∂SM = 0.

Moreover, by Lemma 6.14 we also know that fk = 0 for |k| ≥ m+1. From Corollary
10.6 we deduce that uk = 0 for |k| ≥ m. If m is even (resp. odd) we may take
u odd (resp. even). By Proposition 6.15 there is a unique p ∈ C∞(Sm−1(T ∗M))
such that u = `m−1p. Since u|∂SM = 0, p|∂M = 0. Finally Xu = f can be written
using Lemma 6.13 as

`mdp = X`m−1p = `mh

and thus h = dp as desired.
�



CHAPTER 11

Boundary rigidity and Lens rigidity

Let (M, g) be a compact manifold with boundary. The distance function dg :
M ×M → R is given by

dg(x, y) = inf
γ∈Λx,y

`g(γ),

where Λx,y denotes the set of smooth curves γ : [0, 1]→M such that γ(0) = x and
γ(1) = y and

`g(γ) :=

∫ 1

0

|γ̇(t)|g dt.

G: perhaps say that if ∂M is strictly convex, the infimum is realized by a mini-
mizing geodesic whose interior is completely contained in M?

Suppose we know dg(x, y) for all (x, y) ∈ ∂M × ∂M . Can we reconstruct g in
the interior of M from this information?

If ψ : M → M is a diffeomorphism such that ψ|∂M = Id, then dψ∗g = dg on
∂M × ∂M since if γ ∈ Λx,y, then ψ ◦ γ ∈ Λx,y and `ψ∗g(γ) = `g(ψ ◦ γ).

Thus the best we can hope for is to recover g up to an isometry that acts as
the identity on the boundary.

Definition 11.1. We say that g is boundary rigid if given any other metric h
with dg|∂M×∂M = dh|∂M×∂M , there exists a diffeomorphism ψ : M →M such that
ψ|∂M = id and h = ψ∗g.

But not all metrics are boundary rigid as the following simple example shows.

Example 11.2. Suppose M contains an open set U on which g is very large.
Then all length minimizing curves will avoid U , and thus dg will not carry any
information about g|U . Thus we can alter g on U (but keeping it large) and not
affect dg on ∂M × ∂M . Here is a concrete example: take M to be the upper
hemisphere of S2, and let g0 denote the natural metric on M . Note that dg0(x, y)
for any two boundary points is realized as the length of the shortest arc on ∂M
connecting x and y. Now take a non-negative function f supported on U and let
g1 = (1 + f)g0. Then dg0 = dg1 on ∂M ×∂M , but g0 and g1 are not isometric since
Vol(M, g1) > Vol(M, g0).

Proposition 11.3. Let M be a compact manifold with non-empty boundary.
Suppose that ∂M is strictly convex with respect to g and g1 and dg = dg1 on
∂M × ∂M . Then there exists a diffeomorphism ψ : M → M such that ψ|∂M = id
and such that if g2 = ψ∗g1, then g2|∂M = g|∂M , i.e., g2(x) = g(x) on TxM × TxM
for all x ∈ ∂M .proposition:normalgauge

79
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Proof. Let (x, v) ∈ T∂M and take a curve τ : (−ε, ε) → ∂M such that
τ(0) = x and τ̇(0) = v. Since τ takes values in ∂M for all s ∈ (−ε, ε) we have

dg1(x, τ(s)) = dg(x, τ(s)).

Thus (cf. Exercise 11.4 below):

eq:exbeloweq:exbelow (11.1) |v|g1 = lim
s→0+

dg1(x, τ(s))

s
= lim
s→0+

dg(x, τ(s))

s
= |v|g.

We now modify g1 so that we also have agreements of the metrics in the normal
direction. Let ν(x) denote the inward unit normal with respect to g and consider
the boundary exponential map

exp∂M : ∂M × R+ →M, (x, t) 7→ expx(tν(x))

which maps a neighbourhood of ∂M ×{0} diffeomorphically onto a neighbourhood
of ∂M . Now define

ψ := expg1∂M ◦ (expg∂M )
−1

where superscripts denote which metric they belong to. Then on some collar neigh-
bourhood U of ∂M , ψ is a diffeomorphism. We extend ψ to a diffeomorphism of M .
We claim that ψ satisfies the requirements of the proposition. Indeed, ψ|∂M = IdG: provide refer-

ence
G: provide refer-
ence and given x ∈ ∂M we have

ψ(γgx,ν(x)(t)) = γg1x,ν1(x)(t).

Differentiating with respect to t we obtain

dxψ(ν(x)) = ν1(x).

Then if x ∈ ∂M and v ∈ Tx∂M :

g2(v, ν(x)) = g1(dxψ(v), dxψ(ν(x)))

= g1(v, ν1(x))

= 0.

Thus g2 = ψ∗g1 has unit normal equal to ν and hence

g2|∂M = g|∂M .

�

Exercise 11.4. Prove the first equality in (11.1).ex:lim

Lemma 11.5. Let (M, g) be a simple manifold. Given x ∈ M , let f : M → R
be f(y) = dg(x, y). Given (x, y) ∈ ∂M × ∂M with x 6= y, let γx,y be the unique
geodesic connecting x to y and let `x,y be its length. Then

∇f(y) = γ̇x,y(`x,y).

lemma:grad-dist

Exercise 11.6. Prove the lemma.

Proposition 11.7. Let g1 and g2 be two simple metrics on M such that dg1 =
dg2 on ∂M × ∂M and g1|∂M = g2|∂M . Then αg1 = αg2 .proposition:ddets
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Proof. Note that we only need to show that αg1 = αg2 on ∂+SM since αgi :

∂−SM → ∂+SM equals
(
αgi |∂+SM

)−1
. Fix x, y ∈ ∂M and consider the unique

geodesic γix,y connecting x to y. By the definition of the scattering relation

αgi(x, γ̇
i
x,y(0)) = (y, γ̇ix,y(`ix,y)), i = 1, 2.

Let ` := `1x,y = `2x,y. We are required to prove that

γ̇1
x,y(0) = γ̇2

x,y(0), γ̇1
x,y(`) = γ̇2

x,y(`).

Let fi(y) = dgi(x, y) and hi = fi|∂M . Then ∇hi(y) is the orthogonal projection
of ∇fi(y) in the hemisphere ∂−SyM onto the “equatorial” unit disk in Ty∂M ; in
particular ∇hi(y) determines ∇fi(y). But h1 = h2, hence by Lemma 11.5

γ̇1
x,y(`) = ∇f1(y) = ∇f2(y) = γ̇2

x,y(`).

To show that γ̇1
x,y(0) = γ̇2

x,y(0) we repeat the argument above only starting at y
and running the two geodesics backwards to x.

�

Definition 11.8. Let (M, g) be a non-trapping manifold with strictly convex
boundary. The lens data of (M, g) consists of (τg|∂+SM , αg) where τg is the exit
time function.

The previous proposition shows that when (M, g) is simple, dg|∂M×∂M deter-
mines the lens data.

11.0.1. Volume determination. The next proposition shows that the vol-
ume is determined by the exit time function τg : ∂+SM → R.

Proposition 11.9. Let g1, g2 be two non-trapping metrics on M such that ∂M
is strictly convex with respect to both of them. If g1|∂M = g2|∂M and τg1 |∂+SM =
τg2 |∂+SM , then Vol(M, g1) = Vol(M, g2).

Proof. This is an immediate consequence of Santaló’s formula that gives

σn−1Vol(M, gi) = Vol(SM, gi) =

∫
∂+SM

τgi dµ, i = 1, 2,

where σn−1 is the volume of the standard (n− 1)-sphere. �

Corollary 11.10. Let g1, g2 be two simple metrics onM with the same bound-
ary distance function. Then Vol(M, g1) = Vol(M, g2).corollary:volume

Proof. Proposition 11.3 shows that after applying a diffeomorphism that is
the identity on the boundary, we may assume g1|∂M = g2|∂M . Since the boundary
distance function determines the lens data, the exit time function of both metrics
must agree and thus by the previous proposition, the volumes are the same. �

11.1. Boundary determination

Theorem 11.11 ([LSU03]). Let g1, g2 be two metrics on M such that ∂M
is strictly convex with respect to both of them. If dg1 = dg2 on ∂M × ∂M , then
after modifying g2 by a diffeomorphism which is the identity on the boundary if
necessary, g1 and g2 have the same C∞-jet. This means that given local coordinates
(x1, . . . , xn) defined in a neighbourhood of a boundary point, we have Dαg1|∂M =
Dαg2|∂M for any multi-index α.
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Proof. By Proposition 11.3 we may assume that g1|∂M = g2|∂M . Moreover,
the proof of Proposition 11.3, gives that near ∂M , g1 and g2 have the same normal
geodesics to the boundary. Set f := g1 − g2. Consider a g1-geodesic γ : [0, 1]→M
connecting boundary points x and y in M (not necessarily with speed one). Then
we observe that

eq:ineqdeq:ineqd (11.2)

∫ 1

0

fγ(t)(γ̇(t), γ̇(t)) dt ≤ 0

since∫ 1

0

fγ(t)(γ̇(t), γ̇(t)) dt =

∫ 1

0

(g1)γ(t)(γ̇(t), γ̇(t)) dt−
∫ 1

0

(g2)γ(t)(γ̇(t), γ̇(t)) dt

≤ (dg1(x, y))2 − (dg2(x, y))2

= 0.

Fix a point p ∈ ∂M and consider boundary normal coordinates (u1, . . . , un−1, z) on
a neighbourhood U of p. By definition these are coordinates such that z ≥ 0 on U
and ∂M ∩ U = {z = 0}, and that the length element ds2

1 of the metric g1 is given
by

ds2
1 = (g1)αβdu

αduβ + dz2, α, β ∈ {1, . . . , n− 1}.
The coordinate lines u = constant are geodesics of the metric g1 orthogonal to
the boundary. But we have set up the metrics g1 and g2 near the boundary so
that u = constant are also geodesics of the metric g2. It follows that the same
coordinates are also boundary normal coordinates for g2; in particular

ds2
2 = (g2)αβdu

αduβ + dz2, α, β ∈ {1, . . . , n− 1}.

Since p was arbitrary, to prove the theorem it suffices to show that for all x ∈
∂M ∩ U , k ∈ N ∪ {0} and 1 ≤ α, β ≤ n− 1 we have

eq:zeroderivativeseq:zeroderivatives (11.3)
∂fαβ
∂zk

(x) = 0,

where fαβ = (g1)αβ − (g2)αβ . The case k = 0 is precisely the assertion that
g1|∂M = g2|∂M and so this gives the base step for an inductive proof. Suppose that
(11.3) holds for 0 ≤ k < l but fails for l. This implies the existence of x0 ∈ ∂M ∩U
and v0 ∈ Sx0

∂M such that

∂lfαβ
∂zl

(x0)vα0 v
β
0 6= 0.

Assume
∂lfαβ
∂zl

(x0)vα0 v
β
0 > 0.

By continuity, there is a neighbourhood O ⊂ SM of (x0, v0) such that for all
(x, v) ∈ O,

eq:derf>0eq:derf>0 (11.4)
∂lfαβ
∂zl

(x)vαvβ > 0.

Since the left hand side in (11.4) is a homogeneous polynomial of degree 2, we may
assume that if

CO :=

{
(x, v) ∈ TM : v 6= 0,

(
x,

v

|v|

)
∈ O

}
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then (11.4) holds for all (x, v) ∈ CO. Now we expand fαβ in a Taylor series; using
the inductive hypothese we may write

fαβ(u, z) =
1

l!

∂lfαβ
∂zl

(u, 0)zl + o(|z|l),

and hence shrinking O if necessary we may assume that for all (x, v) ∈ CO we
actually have

eq:f>0eq:f>0 (11.5) fαβ(x)vαvβ > 0.

Now let δ : (−ε, ε) → ∂M be a curve such that δ(0) = x0 and δ̇(0) = v0, and let
γτ : [0, 1]→M be the shortest geodesic of g1 joining x0 to δ(τ) for τ > 0 and small.
Then (

γτ (t),
γ̇τ (t)

|γ̇τ (t)|

)
→ (x0, v0)

uniformly in t ∈ [0, 1] as τ → 0. Thus for sufficiently small τ > 0, we have
(γτ (t), γ̇τ (t)) ∈ CO for all t ∈ [0, 1], and hence∫ 1

0

fγτ (t)(γ̇τ (t), γ̇τ (t)) dt > 0

thus contradicting (11.2). If

∂lfαβ
∂zl

(x0)vα0 v
β
0 < 0

a similar contradition is obtained if we integrate f along a g2-geodesic so that (11.2)
changes sign. This completes the proof.

�

11.2. Rigidity in a given conformal class

In thi section we prove boundary rigidity within the conformal class of a simple
metric cf. [Cro91, Muh81, MR78].

thm:conf Theorem 11.12. Let g1 and g2 be simple metrics on M with the same boundary
distance function. If g2 is conformal to g1, i.e., g2 = ω2(x)g1 for a smooth positive
function ω on M , then ω ≡ 1.

Proof. In view of (11.4), ω = 1 on the boundary of M . Next, using Proposi-
tion 11.7, we see that the scattering relations of g1 and g2 coincide. Let us denote
by τ their common exit time function.

Let us show that ω = 1 on the whole of M . Since geodesics on a simple manifold
minimize the energy

Eg(γ) =

∫ T

0

|γ̇(t)|2g dt

among all curves γ : [0, T ] → M with the same endpoints we deduce for (x, v) ∈
∂+SM :

eq:a’eq:a’ (11.6) τ(x, v) = Eg2(γ2
x,v) ≤ Eg2(γ1

x,v) =

∫ τ(x,v)

0

ω2(γ1
x,v(t)) dt.
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Using Santaló’s formula we obtain

Vol(M, g2) =
1

σn−1

∫
∂+SM

τ dµ

≤ 1

σn−1

∫
∂+SM

{∫ τ(x,v)

0

ω2(γ1
x,v(t)) dt

}
dµ

=

∫
M

ω2 dV ng1 .

On the other hand, by Hölder’s inequality
hoelderhoelder (11.7)∫

M

ω2 dV ng1 ≤
{∫

M

ωn dV ng1

} 2
n
{∫

M

dV ng1

}n−2
n

= Vol(M, g2)
2
nVol(M, g1)

n−2
n ,

with equality if and only if ω ≡ 1.
It follows that

v-vv-v (11.8) Vol(M, g2) ≤ Vol(M, g2)
2
nVol(M, g1)

n−2
n .

However, by Corollary 11.10, Vol(M, g1) = Vol(M, g2), which implies that (11.8)
holds with the equality sign. This means that (11.7) holds with the equality sign.
Thus, ω ≡ 1.

�

11.3. Scattering rigidity

In what follows we shall assume that (M, g1) and (M, g2) are non-trapping
surfaces with strictly convex boundary such that g1|∂M = g2|∂M . Given a function
ϕ ∈ C∞(∂+SM) we denote by ϕ]gi the function uniquely determined by Xgiϕ

]gi =
0 and ϕ]gi |∂+SM = ϕ.

Recall that the scattering relation is a smooth map αg : ∂+SM → ∂−SM
that extends to a diffeomorphism αg : ∂SM → ∂SM such that α2

g = id. Note

that if αg1 = αg2 then ϕ]g1 |∂SM = ϕ]g2 |∂SM since ϕ]gi |∂−SM = ϕ ◦ αgi . Thus the
scattering relation determines the boundary values of invariant functions.

Observe that if αg1 = αg2 , then C∞α (∂+SM) is the same space for both metrics
since it only depends on α.

Recall that the Dirichlet-to-Neumann map Λg : C∞(∂M) → C∞(∂M) is de-
fined as follows. Given f ∈ C∞(∂M), consider the unique harmonic extension u of
f to (M, g) and set

Λgf := du(ν)|∂M .
We are now ready to show:

Theorem 11.13. Let (M, g1) and (M, g2) be non-trapping surfaces with strictly
convex boundary, I∗0 surjective and g1|∂M = g2|∂M . If αg1 = αg2 , then Λg1 = Λg2 .thm:DN

Proof. First we show that αg controls the Fourier series of invariant functions
(here holomorphic means fibre-wise holomorphic), in other words, if αg1 = αg2 , then

ϕ]g1 holomorphic in (M, g1) =⇒ ϕ]g2 holomorphic in (M, g2).

(Note that ϕ]g1 is smooth iff ϕ]g2 is.) Indeed, let

w :=

−1∑
−∞

(ϕ]g2 )k.
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Then w|∂SM = 0 since ϕ]g1 is holomorphic and the boundary values of invariant
functions are the same. Since

Xg2w = η+,g2w−1 + η+,g2w−2

splitting into even and odd components and applying Theorem 10.3 we deduce that
w = 0.

Next show that αg determines the boundary values of holomorphic functions in
M (here holomorphic means with respect to x ∈M), in other words, if αg1 = αg2 ,
then

h holomorphic in (M, g1) =⇒ ∃ h̃ holomorphic in (M, g2) with h̃|∂M = h|∂M .

Given h is holomorphic in (M, g1) use surjectivity of I∗0 to choose w with Xg1w = 0
and w0 = h. Replacing w by its holomorphic projection if necessary, we have
that w = ϕ]g1 is fibre-wise holomorphic and (ϕ]g1 )0,g1 = h. Then also ϕ]g2 is
fibre-wise holomorphic and Xg2ϕ

]g2 = 0, so η−,g2(ϕ]g2 )0,g2 = 0. This means that

h̃ = (ϕ]g2 )0,g2 is holomorphic in (M, g2) and it has the same boundary values as h.
The fact that boundary values of holomorphic functions in (M, g1) and (M, g2)

coincide is just another way of saying that Λg1 = Λg2 . If f ∈ C∞(∂M), let u
be the harmonic extension of f in (M, g1), let v be a harmonic conjugate of u in

(M, g1) and let h = u + iv. Then there is h̃ = ũ + iṽ holomorphic in (M, g2)

with h̃|∂M = h|∂M . Then if ν⊥ denotes the rotation of ν by π/2 according to the

orientation, holomorphicity of h and h̃ implies

du(ν) = dv(ν⊥),

dũ(ν) = dṽ(ν⊥).

Thus

Λg1f = du(ν) = dv(ν⊥)

= dṽ(ν⊥) = dũ(ν)

= Λg2f.

The equality dv(ν⊥) = dṽ(ν⊥) holds because v|∂M = ṽ|∂M .
�

11.4. Royden’s proof [Roy56]

We now wish to study the consequences of Theorem 11.13. We note that a
metric g on M makes M into a compact Riemann surface with boundary. As we
saw in the proof of the theorem, αg determines the boundary values of holomorphic
functions on M . Let Ai denote the ring of holomorphic functions in (M, gi) (smooth
all the way up to the boundary). The proof of Theorem 11.13 gives a map F :

A1 → A2 by setting F (h) = h̃. It is immediate to check that this map is a ring
isomorphism mapping constant functions to constant functions.

We now invoke the following fact about the ring A; this should hold given the
comments in [Roy56, Page 272].

Proposition 11.14. An ideal I is an ideal consisting of all functions which
vanish at some point x ∈ M if and only if it is the kernel of a homomorphism
π : A→ C such that π(c) = c for all complex constants c.prop:ideal



86 11. BOUNDARY RIGIDITY AND LENS RIGIDITY

G: check carefully that the boundary does not cause any problems. Keep in
mind that (M, g) can be embedded into an open Riemann surface S without
boundary, so one can -if needed- consider holomorphic functions on S and re-
strict to M . But also note that there could be elements in A(M) having ∂M as
its natural boundary.

We now follow the proof of [Roy56, Theorem 1]. Let x ∈ M and denote by
Ix the ideal consisting of all functions in A2 that vanish at x. By Proposition
11.14 there is a homomorphism π : A2 → C which preserves constants and whose
kernel is Ix. Now π ◦ F : A1 → C is a homomorphism preserving constants and by
Proposition 11.14, its kernel is an ideal Iy in A1. This defines a map ψ : M →M ,
by setting ψ(x) = y. (For this map to be well-defined we need to note that given x
there is a holomorphic function that vanishes only at x.)

Let h ∈ A1 and suppose F (h)(x) = c. Then F (h) − c ∈ Ix and h − c ∈ Iψ(x).
Thus the value of h at ψ(x) is also c, and thus F (h) = h ◦ ψ. Note also that since
F (h)|∂M = h|∂M , the map ψ must be the identity on ∂M . It is also straightforward
to check that ψ is unique: if φ is another map such that F (h) = h ◦ ψ = h ◦ φ for
all h and ψ(x) 6= φ(x) for some x we could construct a function h with different
values at these points and arrive at a contradiction.

Let us prove that ψ is continuous. Consider a sequence xn → x and suppose by
contradiction that ψ(xn) does not converge to ψ(x). We may consider a subsequence
still denoted xn such that ψ(xn) → z 6= ψ(x). Let h ∈ A1 such that h(ψ(x)) = 0
and h(z) 6= 0. Then F (h)(xn) → F (h)(x) = 0, while h(ψ(xn)) → h(z) 6= 0, a
contradiction since F (h) = h ◦ ψ. Thus ψ must be continuous.

Let x be a point in the interior of M and let h ∈ A1 be such that it has a simple
zero at ψ(x). Set g := F (h). Then there is a neighbourhood U of ψ(x) in which
h is 1 − 1. Take a neighbourhood V of x such that V ⊂ ψ−1(U) and such that
g(U) ⊂ h(U). Then in V we can represent ψ by h−1◦g and hence ψ is holomorphic.

Finally to conclude that ψ : (M, g2) → (M, g1) is a conformal equivalence,
observe that F is an isomorphism, hence its inverse induces a holomorphic map ψ′

such that ψ ◦ ψ′ induces the identity map in A1 and by uniqueness ψ ◦ ψ′ is the
identity.

Hence combining the argument above with Theorem 11.13 we have proved:

Theorem 11.15. Let (M, g1) and (M, g2) be non-trapping surfaces with strictly
convex boundary, I∗0 surjective and g1|∂M = g2|∂M . If αg1 = αg2 , then there exists
a conformal equivalence ψ : (M, g1)→ (M, g2) such that ψ|∂M = id.thm:scarigid

G: check that in the proof above ψ is smooth up to the boundary. But this
seems perfectly fine: just take h holomorphic in a slightly larger open Riemann
surface containing (M, g1) and run the same proof as above around a bound-
ary point. One still gets ψ = h−1 ◦ g as above where h−1 and g are smooth up
to the boundary, (even though in principle g might not extend holomorphically
outside M).

11.4.1. Using Royden’s result directly. We might wish to avoid checking
Proposition 11.14 and use [Roy56, Theorem 1] directly for open surfaces as follows.
The following argument requires to know that g1 and g2 have the same C∞-jet at
the boundary, something that we might eventually prove elsewhere. Consider MWe only need the

jets of j1 and j2
to agree at the
boundary and this
might follow from
equality of the DN
maps, even using
less regular com-
plex structures
might be fine

We only need the
jets of j1 and j2
to agree at the
boundary and this
might follow from
equality of the DN
maps, even using
less regular com-
plex structures
might be fine

inside an open surface S. Extend the metrics g1 and g2 smoothly and equally
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outside M . Hence we have two open Riemann surfaces (S, j1) and (S, j2), where ji
is the complex structure associated with gi. Clearly j1 = j2 outside M . Let A(S, ji)
denote the ring of holomorphic functions of (S, ji). We will define an isomorphism
F : A(S, j1) → A(S, j2) using the fact that j1 and j2 have the same boundary
values for holomorphic functions in M . Consider h ∈ A(S, j1) and restrict it to M .

We know there exists a holomorphic function h̃ in (M, j2) such that h|∂M = h̃|∂M .
Define a function

eq:3eq:3 (11.9) h̃S(x) :=

{
h̃(x), x ∈M
h(x), x ∈ S \M.

The function h̃S is clearly continuous since h and h̃ agree on ∂M . Moreover, h̃S is
j2-holomorphic in S \ ∂M . Since ∂M is removable, we deduce that h̃S ∈ A(S, j2).

Define F (h) := h̃S . Now it is straightforward to check that F is an isomorphism
since the roles j1 and j2 can be swapped. Moreover, F maps constants to constants.
Hence by [Roy56, Theorem 1], there is a unique conformal equivalence ψ : (S, j2)→
(S, j1) such that F (h) = h ◦ ψ. Since h and h̃S agree on the complement of the
interior of M , ψ must be the identity on that set.

11.5. Boundary rigidity for simple surfaces

We are now ready to prove the main result of this chapter.

Theorem 11.16 (Pestov-Uhlmann [PU05]). Let g1 and g2 be two simple met-
rics on a surface M with the same boundary distance function. Then there exists
a diffeomorphism ψ : M →M such that ψ|∂M = id and g2 = ψ∗g1.

Proof. After applying a diffeomorphism if necessary we may assume by Propo-
sition 11.3 that g2|∂M = g1|∂M . We also know that on a simple manifold I∗0 is sur-
jective by Theorem 8.6. Since the boundary distance function determines the lens
data, we may apply Theorem 11.15 to deduce that there exists a diffeomorphism
ψ : M → M such that ψ|∂M = Id and g2 = ω2ψ∗g1, where ω is a smooth positive
function. Finally Theorem 11.12 gives ω ≡ 1 and the proof is completed.

�

11.6. Relation to Calderón problem in 2D.

Linearized Calderón? We know how to solve this (it is in an old file)





CHAPTER 12

Attenuated geodesic X-ray transform

12.1. Novikov’s formula? Finch’s survey

12.2. Salo-Uhlmann result, attenuation of the form
a(x) + θx(v) ∈ GL(1,C)

In this section we consider the case when the attenuation A is scalar and has
the special form A(x, v) = a(x) + θx(v) where a ∈ C∞(M,C) is a function and θ is
a smooth complex-valued 1-form. Since we are working in two dimensions, we may
equivalently say that we shall consider attenuations for which

A = a−1 + a0 + a1 ∈ Ω−1 ⊕ Ω0 ⊕ Ω1.

We will consider first the case a0 = 0 (i.e. purely a 1-form). In this setting we can
prove a fairly general result:

Theorem 12.1. Let (M, g) be a non-trapping surface with strictly convex bound-
ary and I∗0 surjective. Let θ be any smooth complex-valued 1-form. Then I0,θ is
injective.thm:injectiveatt

Proof. Suppose there is a smooth f ∈ Ω0 such that I0,θf = 0. By Theorem
5.10 there is a smooth function u such that Xu + θu = −f and u|∂SM = 0. Since
X+θ maps even (odd) functions to odd (even) and f ∈ Ω0 we may assume without
loss of generality that u is odd.

Using Proposition 10.1 we know that there exists w holomorphic and even with
Xw = θ. Thus we may write

eq:noatteq:noatt (12.1) X(ewu) = ew((Xw)u+Xu) = −few.

Note that ewu is odd and consider

q :=

−1∑
−∞

(ewu)k.

Since few is holomorphic, (12.1) gives

Xq = η+q−1 ∈ Ω0.

But q|∂SM = 0, hence injectivity of I0 gives q = 0. This means that ewu is
holomorphic and thus u is holomorphic. Using Proposition 10.1 again but with w̃
anti-holomorphic we deduce that u is also anti-holomorphic. Since we assumed u
odd we must have u = 0 and thus f = 0 as claimed.

�

This result has the following important corollary.

89
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Corollary 12.2. Let (M, g) be a simple surface and let θ be a smooth
complex-valued 1-form. Then, given f ∈ C∞(M,C) there exists u ∈ C∞(SM,C)
such that {

Xu+ θu = 0,
u0 = f

cor:thetatransport

Proof. Consider any smooth function R : SM → C\{0} such that XR+θR =
0 and set W = R̄. Then by Remark 5.15 injectivity of I0,θ is equivalent to injectivity
of I0,W . Combining Theorem 12.1 with Corollary 8.10 we deduce right away the
existence of u as claimed.

�

The next theorem may be seen as the dual statement at the level of the trans-
port equation to the injectivity of the geodesic X-ray transform on the spaces Ωk.

Theorem 12.3. Let (M, g) be a simple surface. Given f ∈ Ωk there exists
u ∈ C∞(SM) such that {

Xu = 0,
uk = f

thm:fulltransportsol

Proof. Let r := eikθ ∈ Ωk. Then θ := r−1X(r) ∈ Ω−1 ⊕ Ω1 is a 1-form. By
Corollary 12.2, there exists a smooth u such that Xu+θu = 0 and u0 = r−1f ∈ Ω0.
Now observe

X(ru) = r(Xu+ θu) = 0

and since (ru)k = ru0 = f ∈ Ωk the theorem is proved.
�

Armed with this theorem we can now prove the existence of holomorphic inte-
grating factors for a ∈ C∞(M,C):

Proposition 12.4 (Existence of holomorphic integrating factors, Part II). Let
(M, g) be a simple surface. Given a ∈ Ω0, there exists w ∈ C∞(SM) such that w
is holomorphic and Xw = a. Similarly there exists w̃ ∈ C∞(SM) such that w̃ is
anti-holomorphic and Xw̃ = a.prop:holif2

Proof. We do the proof for w holomorphic; the proof for w̃ anti-holomorphic
is analogous.

First we note -as in the proof of Proposition 10.1- that the equation η−f1 = a
can always be solved. Indeed this is the case since it is equivalent to solving a
∂̄-equation on a disc:

η−f1 = e−2λ∂̄(feλ) = a

where f1 = feiθ. Hence we just need to solve ∂̄(feλ) = e2λa which is always
possible by standard complex analysis.

Next, using Theorem 12.3 there is a smooth function u such that Xu = 0 and
u1 = f1. Now take w = u1 + u3 + u5 + . . . . Then Xw = η−u1 = a and w is the
desired holomorphic integrating factor.

�

We now state the final version on the existence of holomorphic integrating
factors.
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Proposition 12.5 (Existence of holomorphic integrating factors, Final ver-
sion). Let (M, g) be a simple surface. Given a = a−1 + a0 + a−1 ∈ Ω−1 ⊕Ω0 ⊕Ω1,
there exists w ∈ C∞(SM) such that w is holomorphic and Xw = a. Similarly there
exists w̃ ∈ C∞(SM) such that w̃ is anti-holomorphic and Xw̃ = a.prop:holiffinal

Proof. This is a direct consequence of Propositions 10.1 and 12.4. �

We can now prove the main result of this section.

Theorem 12.6. Let (M, g) be a simple surface. Let a = a−1 + a0 + a−1 ∈
Ω−1 ⊕ Ω0 ⊕ Ω1. Then I0,a is injective.

Proof. This proof is very similar in spirit that of Theorems 12.1 and 10.3.
Suppose there is a smooth f ∈ Ω0 such that I0,af = 0. By Theorem 5.10 there is
a smooth function u such that Xu+ au = −f and u|∂SM = 0.

Using Proposition 12.5 we know that there exists w holomorphic with Xw = a.
Thus we may write

eq:noatt-2eq:noatt-2 (12.2) X(ewu) = ew((Xw)u+Xu) = −few.
Consider

q :=

−1∑
−∞

(ewu)k.

Since few is holomorphic, (12.2) gives

Xq = η+q−2 + η+q−1 ∈ Ω−1 ⊕ Ω0.

But q|∂SM = 0, hence splitting into even and odd degrees, Theorem 10.3 gives that
q = 0. This means that ewu is holomorphic and thus u is holomorphic. Using
Proposition 12.5 again but with w̃ anti-holomorphic we deduce that u is also anti-
holomorphic. Hence u = u0. To complete the proof we need to show that u0 also
vanishes (and hence f = 0 as well).

Going back to the transport equation Xu+au = −f we see that if we focus on
degree −1 we have η−u0 +a−1u0 = 0 with u0|∂M = 0. Solve for b ∈ Ω0, η−b = a−1.
Then

η−(ebu0) = 0

and ebu0 is a holomorphic function on M that vanishes on the boundary, so it must
be zero everywhere.

�

G: After this result there is not much else to do except discuss tensor tomogra-
phy with attenuation a as above. We can also set that up as exercise.

12.3. Relation to Boman’s results, analiticity, counterexamples

12.4. Open problem with polynomial attenuation
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Non-abelian X-ray transforms

Let (M, g) be a non-trapping manifold of dimension d with strictly convex
boundary ∂M . Consider a matrix attenuation A as in Section 5.3, namely, let
A : SM → Cn×n be a smooth function. Consider (M, g) isometrically embedded in
a closed manifold (N, g) and we extend A smoothly to N . Under these assumptions
A on N defines a smooth cocycle over the geodesic flow ϕt of (N, g). Recall that
the cocycle takes values in the group GL(n,C) and is determined by the following
matrix ODE along the orbits of the geodesic flow

d

dt
C(x, v, t) +A(ϕt(x, v))C(x, v, t) = 0, C(x, v, 0) = Id.

In Lemma 5.6 we have seen that the function

U+(x, v) := [C(x, v, τ(x, v)]−1

solves

eq:weightpluseq:weightplus (13.1)

{
XU+ +AU+ = 0,
U+|∂−SM = Id.

Definition 13.1. The scattering data of A is the map CA,+ : ∂+SM →
GL(n,C) given by

CA,+ := U+|∂+SM .

We shall also call CA,+ the non-abelian X-ray transform of A.

Note that CA,+ ∈ C∞(∂+SM,Cn×n). We can also consider the unique solution
of

eq:weightminuseq:weightminus (13.2)

{
XU− +AU− = 0,
U−|∂+SM = Id

and define scattering data CA,− : ∂−SM → GL(n,C) by setting

CA,− := U−|∂−SM .

Both quantities are related by

eq:relplusminuseq:relplusminus (13.3) CA,− = [CA,+]−1 ◦ α.

Exercise 13.2. Prove (13.3).

From now on we shall only work with CA,+ and we shall drop the subscript +
from the notation.

93
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13.1. Pseudo-linearization identity

Given two A,B ∈ C∞(SM,Cn×n) we would like to have a formula relating
CA and CB with certain attenuated X-ray transform. We first introduce the map
E(A,B) : SM → End(Cn×n) given by

E(A,B)U := AU − UB.
Here, End(Cn×n) denotes the linear endomorphisms of Cn×n.

Proposition 13.3. Let (M, g) be a non-trapping manifold with strictly convex
boundary. Given A,B ∈ C∞(SM,Cn×n), we have

eq:pseudo-linearizationeq:pseudo-linearization (13.4) CAC
−1
B = Id + IE(A,B)(A− B),

where IE(A,B) denotes the attenuated X-ray transform with attenuation E(A,B)
as defined in Definition 5.7.

Proof. Consider the fundamental solutions for both A and B, namely{
XUA +AUA = 0,
UA|∂−SM = Id,

and {
XUB +AUB = 0,
UB|∂−SM = Id.

Let W := UAU
−1
B − Id. A direct computation shows that{

XW +AW −WB = −(A− B),
W |∂−SM = 0.

By definition of IE(A,B) we have

IE(A,B)(A− B) = W |∂+SM
and since by construction W |∂+SM = CAC

−1
B − Id, the proposition follows.

�

Remark 13.4. Note that the function U := UAU
−1
B satisfies{

B = U−1XU + U−1AU,
U |∂−SM = Id.

remark:gaugeU

Using this identity we can establish when two attenuationsA,B ∈ C∞(SM,Cn×n)
have the same non-abelian X-ray data:

Proposition 13.5. Let (M, g) be a non-trapping manifold with strictly convex
boundary. Given A,B ∈ C∞(SM,Cn×n), we have CA = CB if and only if there
exists a smooth U : SM → GL(n,C) with U |∂SM = Id and such that

B = U−1XU + U−1AU.
proposition:gaugeU

Proof. If such a smooth function U exists it is straightforward from the def-
initions that CA = CB. Indeed the function V = UUB satisfies XV + AV = 0
and V |∂−SM = Id and thus V = UA and consequently CA = CB. Conversely, if
the non-abelian X-ray transforms agree, the function W in the proof of Proposition
13.4 has zero boundary value and by Theorem 5.10 is must be smooth. Hence
U = W + Id is smooth and by Remark 13.4 it satisfies the required equation.
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�

Exercise 13.6. Consider the Hermitian inner product on the set of n × n
matrices Cn×n given by (U, V ) = trace(UV ∗) where V ∗ denotes the conjugate
transpose of V . Show that the adjoint of E(A,B) with respect to this inner product
is

[E(A,B)]∗U = E(A∗,B∗)U.
Conclude that if both A and B are skew-hermitian, i.e. A∗ = −A and B∗ = −B,
then E∗ = −E as well.exe:unitary

13.2. Elementary background on connections

Consider the trivial bundle M × Cn. For us a connection A will be a complex
n× n matrix whose entries are smooth 1-forms on M . Another way to think of A
is to regard it as a smooth map A : TM → Cn×n which is linear in v ∈ TxM for
each x ∈M .

Very often in physics and geometry one considers unitary or Hermitian con-
nections. This means that the range of A is restricted to skew-Hermitian matrices.
In other words, if we denote by u(n) the Lie algebra of the unitary group U(n),
we have a smooth map A : TM → u(n) which is linear in the velocities. There is
yet another equivalent way to phrase this. The connection A induces a covariant
derivative dA on sections s ∈ C∞(M,Cn) by setting dAs = ds + As. Then A be-
ing Hermitian or unitary is equivalent to requiring compatibility with the standard
Hermitian inner product of Cn in the sense that

d〈s1, s2〉 = 〈dAs1, s2〉+ 〈s1, dAs2〉
for any pair of functions s1, s2.

Given two unitary connections A and B we shall say that A and B are gauge
equivalent if there exists a smooth map u : M → U(n) such that

eq:1eq:1 (13.5) B = u−1du+ u−1Au.

The curvature of the connection is the 2-form FA with values in u(n) given by

FA := dA+A ∧A.
If A and B are related by (13.5) then:

FB = u−1 FA u.

Given a smooth curve γ : [a, b] → M , the parallel transport along γ is obtained by
solving the linear differential equation in Cn:

eq:2eq:2 (13.6)

{
ṡ+A(γ(t), γ̇(t))s = 0,
s(a) = w ∈ Cn.

The isometry PA(γ) : Cn → Cn is defined as PA(γ)(w) := s(b). We may also
consider the fundamental unitary matrix solution U : [a, b] → U(n) of (13.6). It
solves

eq:3eq:3 (13.7)

{
U̇ +A(γ(t), γ̇(t))U = 0,
U(a) = Id.

Clearly PA(γ)(w) = U(b)w.
A connection A naturally gives rise to a matrix attenuation of a special type

simply setting A(x, v) := A(x, v). Note that since A is a matrix of 1-forms, it is
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completely determined by its values on SM . The scattering data CA : ∂+M →
GL(n,C) encapsulates the parallel transport of A along geodesics running between
boundary points.

13.3. Structure equations including a connection
section:auxback

In this section we consider an oriented Riemannian surface (M, g) and a connec-
tion A on the trivial bundle M ×Cn. Recall that the metric g induces a Hodge star
operator ? acting on forms. If we regard connections as functions A : SM → Cn×n
with A ∈ Ω−1 ⊕ Ω1, then ?A = −V A. If iv denotes rotation of v ∈ TxM by π/2
according to the orientation of the surface (or multiplication by i using the complex
structure induced by g), then V A(x, v) = A(x, iv) = − ? A(x, v).

The main purpose of this section is to establish the following lemma that de-
scribes backet relations when X is replaced by X + A and X⊥ by X⊥ + ?A. Here
we understand that A and ?A act on functions by multiplication.

Lemma 13.7. The following equations hold:

[V,X +A] = −(X⊥ + ?A)

[V,X⊥ + ?A] = X +A

[X +A,X⊥ + ?A] = −KV − ?FA.
lemma:bracketsA

Proof. Let us recall the standard brackets:

[V,X] = −X⊥
[V,X⊥] = X

[X,X⊥] = −KV.

Hence the first two bracket relations in the lemma follow from [V,A] = V (A) = −?A
and [V, ?A] = −V 2(A) = A. To check the third and last bracket it suffices to prove
that

eq:FAeq:FA (13.8) ?FA = X⊥(A)−X(?A) + [?A,A].

GIven a unit norm vector v ∈ TxM , {v, iv} is a positively oriented orthonormal
basis. Thus

?FA(x) = FA(v, iv) = dA(v, iv) + (A ∧A)(v, iv) = dA(v, iv) + [A(v), A(iv)].

But [?A,A](x, v) = [−A(iv), A(v)], and thus to complete the proof of (13.8) we just
have to show that

X⊥(A)(x, v)−X(?A)(x, v) = dA(v, iv).

Let π : SM → M be the canonical projection. Recall that dπ(X(x, v)) = v and
dπ(X⊥(x, v)) = −iv. Consider π∗A and note (using the standard formula for d
applied to π∗A):

d(π∗A)(X,X⊥) = Xπ∗A(X⊥)−X⊥(π∗A(X))− π∗A([X,X⊥]).

By the structure equations, the term [X,X⊥] is purely vertical, hence it is killed
by π∗A. Next note that π∗A(X⊥)(x, v) = A(−iv) = (?A)(v) and π∗A(X) = A(v).
Finally since

d(π∗A)(X,X⊥) = π∗dA(X,X⊥) = dA(dπ(X), dπ(X⊥)) = −dA(v, iv)
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we are done.
�

Given a connection A ∈ Ω−1⊕Ω1 we write it as A = A−1+A1 with A±1 ∈ Ω±1.
We can consider modified operators

µ± := η± +A±1.

Clearly X +A = µ+ + µ−. These operators also satisfy nice brackets relations:

Lemma 13.8. The following bracket relations hold

[µ±, iV ] = ±µ±, [µ+, µ−] =
i

2
(KV + ?FA).

Moreoverlemma:bracketsmu

µ+ : Ωk → Ωk+1, µ− : Ωk → Ωk−1

and if A is unitary (µ±)∗ = −µ∓.

Proof. We only prove the relation [µ+, µ−] = i
2 (KV + ?FA), the rest is left

as exercise. First we note that

µ± =
(X +A)± i(X⊥ + ?A)

2
.

Hence

[µ+, µ−] =
i

2
[X⊥ + ?A,X +A]

and the desired relation follows from Lemma 13.7.
�

Exercise 13.9. Show that X + A maps even functions to odd functions and
odd functions to even functions.

Exercise 13.10. If H denotes the Hilbert transform, show that for any smooth
function u ∈ C∞(SM,Cn):

[H,X +A]u = (X⊥ + ?A)(u0) + ((X⊥ + ?A)(u))0.

13.4. Scattering rigidity for connections

In this section we would like to consider the following geometric inverse prob-
lem: is a connection A determined by CA?

Right away, we see that the problem has a gauge: if u : M → GL(n,C) is a
smooth map with u|∂M = Id, then

Cu−1du+u−1Au = CA.

Our goal would be to show:

Theorem 13.11. Let (M, g) be a simple surface and let A and B be two unitary
connections with CA = CB. Then there exists a smooth u : M → U(n) with
u|∂M = Id such that B = u−1du+ u−1Au.thm:scatteringA

From Proposition 13.5 we know that CA = CB means that there exists a smooth
U : SM → U(n) such that U |∂SM = Id and

B = U−1XU + U−1AU.
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Notice the similarity of this equation with our goal, which is to show that

B = u−1du+ u−1Au.

In fact if U only had dependence on x and not on v, then U = u, XU(x, v) = dxu(v)
and we would be done. We will accomplish this for a simple surface. We start by
rephrasing our problem in terms of an attenuated ray transform. Showing that
U depends only on x is equivalent to showing that W = U − Id depends only
on x. But as we have seen, W is associated precisely with the attenuated X-ray
transform IE(A,B)(A−B) and if CA = CB , then this transform vanishes. Note that
A−B ∈ Ω−1 ⊕ Ω1.

Hence, making the choice to ignore the specific form E(A,B) but noting that
it is unitary by Exercise 13.6, it suffices to show:

Theorem 13.12. Let (M, g) be a simple surface and let A be a unitary connec-
tion. Suppose there is a smooth function u : SM → Cn such that{

Xu+Au = f ∈ Ω−1 ⊕ Ω1,
u|∂SM = 0.

Then u = u0 and f = dAu0 = du0 +Au0 with u0|∂M = 0.THM:KEYA

We will prove this theorem in the next section.

13.5. Proof of Theorem 13.12

The first key ingredient is an energy identity which generalizes the standard
Pestov identity from Proposition 4.12 to the case when a connection is present.
Recall that the curvature FA of the connection A is defined as FA = dA + A ∧ A
and ?FA is a function ?FA : M → u(n).

Lemma 13.13 (Energy identity). If u : SM → Cn is a smooth function such
that u|∂SM = 0, then

‖(X +A)V u‖2− (K V u, V u)− (?FAu, V u) = ‖V (X +A)(u)‖2−‖(X +A)u‖2.
lemma:pestov

Proof. We adopt the same approach as in the proof of Proposition 4.12 we
define P = V (X + A). Since A is a unitary connection, A∗ = −A and hence
P ∗ = (X +A)V . Let us compute using the structure equations from Lemma 13.7:

[P ∗, P ] = (X +A)V V (X +A)− V (X +A)(X +A)V

= V (X +A)V (X +A) + (X⊥ + ?A)V (X +A)

− V (X +A)V (X +A)− V (X +A)(X⊥ + ?A)

= V [X⊥ + ?A,X +A]− (X +A)2 = −(X +A)2 + V KV + ?FAV.

The identity in the lemma now follows from this bracket calculation and

‖Pu‖2 = ‖P ∗u‖2 + ([P ∗, P ]u, u)

for a smooth u with u|∂SM = 0. �

Remark 13.14. The same Energy identity holds true for closed surfaces.

To use the Energy identity we need to control the signs of various terms. The
first easy observation is the following:
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Lemma 13.15. Assume (X +A)u = f = f−1 + f0 + f1 ∈ Ω−1⊕Ω0⊕Ω1. Then

‖V (X +A)u‖2 − ‖(X +A)u‖2 = −‖f0‖2 ≤ 0.

lemma:easy

Proof. It suffices to note the identities:

‖V (X +A)u‖2 = ‖V (f−1 + f1)‖2 = ‖ − if−1 + if1‖2 = ‖f−1‖2 + ‖f1‖2,
‖f‖2 = ‖f−1 + f1‖2 + ‖f0‖2.

�

Next we have the following lemma due to the absence of conjugate points on
simple surfaces (compare with Proposition 4.13).

Lemma 13.16. Let M be a compact simple surface. If u : SM → Cn is a
smooth function such that u|∂SM = 0, then

‖(X +A)V u‖2 − (K V u, V u) ≥ 0.

lemma:nonconj

G: this is the original proof and a bit different from the proof of Proposition
4.13, should we leave both?

Proof. Consider a smooth function a : SM → R which solves the Riccati
equation X(a) + a2 + K = 0. These exist by the absence of conjugate points. Set G: prove it.G: prove it.
for simplicity ψ = V (u). Clearly ψ|∂SM = 0.

Let us compute using that A is skew-Hermitian:

|(X +A)(ψ)− aψ|2Cn
= |(X +A)(ψ)|2Cn − 2<〈(X +A)(ψ), aψ〉Cn + a2|ψ|2Cn
= |(X +A)(ψ)|2Cn − 2a<〈X(ψ), ψ〉Cn + a2|ψ|2Cn .

Using the Riccati equation we have

X(a|ψ|2) = (−a2 −K)|ψ|2 + 2a<〈X(ψ), ψ〉Cn
thus

|(X +A)(ψ)− aψ|2Cn = |(X +A)(ψ)|2Cn −K|ψ|2Cn −X(a|ψ|2Cn).

Integrating this equality with respect to dΣ3 and using that ψ vanishes on ∂(SM)
we obtain

‖(X +A)(ψ)‖2 − (K ψ,ψ) = ‖(X +A)(ψ)− aψ‖2 ≥ 0.

�

We now show:

Theorem 13.17. Let f : SM → Cn be a smooth function. Suppose u : SM →
Cn satisfies {

Xu+Au = f,
u|∂SM = 0.

Then if fk = 0 for all k ≤ −2 and i ?FA(x) is a negative definite Hermitian matrix
for all x ∈ M , the function u must be holomorphic. Moreover, if fk = 0 for all
k ≥ 2 and i ? FA(x) is a positive definite Hermitian matrix for all x ∈ M , the
function u must be antiholomorphic.thm:pi
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Proof. Let us assume that fk = 0 for k ≤ −2 and i ? FA is a negative definite
Hermitian matrix; the proof of the other claim is similar.

Let q :=
∑−1
−∞ uk. We need to show that q = 0. Since A = A−1 + A1 and

fk = 0 for k ≤ −2, we see that (X + A)q ∈ Ω−1 ⊕ Ω0. Now we are in good shape
to use the Energy identity from Lemma 13.13. We will apply it to q, note that
q|∂SM = 0. We know from Lemma 13.15 that its right hand side is ≤ 0 and using
Lemma 13.16 we deduce

(?FAv, V v) ≥ 0.

But on the other hand

(?FAv, V v) = −4

−1∑
k=−∞

k(i ? FAuk, uk)

and since i ? FA is negative definite this forces uk = 0 for all k < 0.
�

We are now ready to complete the proof of Theorem 13.12.

Proof. Consider the area form ωg of the metric g. Since M is a disk there
exists a smooth 1-form ϕ such that ωg = dϕ. Given s ∈ R, consider the Hermitian
connection

As := A− isϕ Id.

Clearly its curvature is given by

FAs = FA − isωgId
therefore

i ? FAs = i ? FA + sId,

from which we see that there exists s0 > 0 such that for s > s0, i ? FAs is positive
definite and for s < −s0, i ? FAs is negative definite.

Let esw be an integrating factor of −isϕ. In other words w : SM → C satisfies
X(w) = iϕ. By Proposition 10.1 we know we can choose w to be holomorphic or
antiholomorphic. Observe now that us := eswu satisfies us|∂SM = 0 and solves

(X +As)(us) = eswf.

Choose w to be holomorphic. Since f ∈ Ω−1 ⊕ Ω1, the function eswf has the
property that its Fourier coefficients (eswf)k vanish for k ≤ −2. Choose s such
that s < −s0 so that i ? FAs is negative definite. Then Theorem 13.17 implies that
us is holomorphic and thus u = e−swus is also holomorphic.

Choosing w antiholomorphic and s > s0 we show similarly that u is antiholo-
morphic. This implies that u = u0 which together with (X + A)u = f , gives
du0 +Au0 = f . �

13.6. An alternative proof of tensor tomography

In this section we shall use the ideas from the previous section to give an
alternative proof of Corollary 10.6 for the case of (M, g) a simple surface.

Corollary 10.6 is an immediate consequence of the next two results.

proposition_onesidedfourier1 Proposition 13.18. Let (M, g) be a simple surface, and assume that u ∈
C∞(SM) satisfies Xu = −f in SM with u|∂SM = 0. If m ≥ 0 and if f ∈ C∞(SM)
is such that fk = 0 for k ≤ −m− 1, then uk = 0 for k ≤ −m.
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proposition_onesidedfourier2 Proposition 13.19. Let (M, g) be a simple surface, and assume that u ∈
C∞(SM) satisfies Xu = −f in SM with u|∂SM = 0. If m ≥ 0 and if f ∈ C∞(SM)
is such that fk = 0 for k ≥ m+ 1, then uk = 0 for k ≥ m.

Below we will use the operators µ± introduced in Section 13.3. Recall that
when A is unitary

mu_adjointmu_adjoint (13.9) (µ±u, v) = −(u, µ∓v), u, v ∈ C∞(SM) with u|∂SM = 0 or v|∂SM = 0.

We also have commutator formula from Lemma 13.8:

mu_commutatormu_commutator (13.10) [µ+, µ−]u =
i

2
(KV u+ (?FA)u).

We will only prove Proposition 13.18, the proof of the other result being com-
pletely analogous.

Proof of Proposition 13.18. Assume that f is even, m is even, and u is
odd. Let ωg be the area form of (M, g) and choose a real valued 1-form ϕ with
dϕ = ωg. Consider the unitary connection

A(x, v) := isϕx(v)

where s > 0 is a fixed number to be chosen later. Then i?FA = −s. By Proposition
10.1, there exists a holomorphic w ∈ C∞(SM) satisfying Xw = −iϕ. We may

assume that w is even. The functions ũ := eswu and f̃ := eswf then satisfy

(X +A)ũ = −f̃ in SM, ũ|∂SM = 0.

Using that esw is holomorphic, we have f̃k = 0 for k ≤ −m− 1. Also, since esw is
even, f̃ is even and ũ is odd. We now define

v :=

−m−1∑
k=−∞

ũk.

Then v ∈ C∞(SM), v|∂SM = 0, and v is odd. Also, ((X + A)v)k = µ+vk−1 +
µ−vk+1. If k ≤ −m−2 one has ((X+A)v)k = ((X+A)ũ)k = 0, and if k ≥ −m+1
then ((X +A)v)k = 0 since vj = 0 for j ≥ −m. Also ((X +A)v)−m−1 = 0 because
v is odd. Therefore the only nonzero Fourier coefficient is ((X +A)v)−m, and

(X +A)v = µ+v−m−1 in SM, v|∂SM = 0.

We apply the Energy identity in Lemma 13.13 with attenuation A to v, so that

‖(X +A)V v‖2 − (KV v, V v) + (?FAV v, v) + ‖(X +A)v‖2 − ‖V (X +A)v‖2 = 0.

We know from Lemma 13.16 that if (M, g) is simple and v|∂SM = 0, then

pestov_estimate1pestov_estimate1 (13.11) ‖(X +A)V v‖2 − (KV v, V v) ≥ 0.

We also have

pestov_estimate2pestov_estimate2 (13.12) (?FAV v, v) = −
−m−1∑
k=−∞

i|k|(?FAvk, vk) = s

−m−1∑
k=−∞

|k|‖vk‖2.

For the remaining two terms, we compute

‖(X +A)v‖2 − ‖V (X +A)v‖2 = ‖µ+v−m−1‖2 −m2‖µ+v−m−1‖2.
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If m = 0, then this expression is nonnegative and we obtain from the energy identity
that v = 0. Assume from now on that m ≥ 2. Using (13.9), (13.10), and the fact
that vk|∂SM = 0 for all k, we have

‖µ+vk‖2 = ‖µ−vk‖2 +
i

2
(KV vk + (?FA)vk, vk)

= ‖µ−vk‖2 −
s

2
‖vk‖2 −

k

2
(Kvk, vk).

If k ≤ −m− 1 we also have

µ+vk−1 + µ−vk+1 = ((X +A)v)k = 0.

We thus obtain

‖(X +A)v‖2 − ‖V (X +A)v‖2 = −(m2 − 1)‖µ+v−m−1‖2

= −(m2 − 1)

[
‖µ−v−m−1‖2 −

s

2
‖v−m−1‖2 +

m+ 1

2
(Kv−m−1, v−m−1)

]
= −(m2 − 1)

[
‖µ+v−m−3‖2 −

s

2
‖v−m−1‖2 +

m+ 1

2
(Kv−m−1, v−m−1)

]
= −(m2 − 1)

[
‖µ−v−m−3‖2 −

s

2
(‖v−m−1‖2 + ‖v−m−3‖2)

+
m+ 1

2
(Kv−m−1, v−m−1) +

m+ 3

2
(Kv−m−3, v−m−3)

]
.

Continuing this process, and noting that µ−vk → 0 in L2(SM) as k → −∞ (which
follows since µ−v ∈ L2(SM)), we obtain

pestov_estimate3pestov_estimate3 (13.13)

‖(X +A)v‖2 − ‖V (X +A)v‖2 =
m2 − 1

2
s
∑
‖vk‖2 −

m2 − 1

2

∑
|k|(Kvk, vk).

Collecting (13.11)–(13.13) and using them in the energy identity implies that

0 ≥ m2 − 1

2
s
∑
‖vk‖2 +

(
s− m2 − 1

2
sup
M

K

)∑
|k|‖vk‖2.

If we choose s > m2−1
2 supM K, then both terms above are nonnegative and there-

fore have to be zero. It follows that v = 0, so ũk = 0 for k ≤ −m − 1 and also
uk = 0 for k ≤ −m− 1 since u = e−swũ where e−sw is holomorphic.

�

13.7. General skew-Hermitian attenuations

Remarkably, many aspects of the arguments done in the previous sections work
for general attenuations A : SM → Cn×n as long as A∗ = −A. We begin with the
Pestov identity. Define

FA := XV (A) +X⊥(A) + [A, V (A)],eq:F1eq:F1 (13.14)

ϕ(A) := −V 2(A)−A.eq:F2eq:F2 (13.15)

Lemma 13.20 (Energy identity). Let (M, g) be a compact oriented Riemannian
surface with boundary. Assume A ∈ C∞(SM,Cn×n) is skew-Hermitian, i.e. A =
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−A. If u : SM → Cn is a smooth function such that u|∂SM = 0, then

‖(X +A)V u‖2 − (K V u, V u)− (FAu, V u) + ((X +A)u, ϕ(A)u)

= ‖V (X +A)(u)‖2 − ‖(X +A)u‖2.

lemma:pestovA

Proof. If we let G := X +A, then routine calculations show

[V,G] = −(X⊥ − V (A)) := −G⊥
[V,G⊥] = G+ ϕ(A)

[G,G⊥] = −KV − FA.
We adopt the standard approach (as in the proof of Proposition 4.12) and define

P = V G. Since A∗ = −A we have P ∗ = GV . Using the bracket relations above we
compute:

[P ∗, P ] = GV V G− V GGV
= V GV G+G⊥V G− V GV G− V GG⊥
= V [G⊥, G]−G2 − ϕ(A)G = −G2 − ϕ(A)G+ V KV + V FA.

The identity in the lemma now follows from this bracket calculation and

‖Pu‖2 = ‖P ∗u‖2 + ([P ∗, P ]u, u)

for a smooth u with u|∂SM = 0. �

Lemma 13.21. Let M be a compact simple surface and A : SM → Cn×n such
that A∗ = −A. If u : SM → Cn is a smooth function such that u|∂SM = 0, then

‖(X +A)V u‖2 − (K V u, V u) ≥ 0.

lemma:nonconjv2

The proof of this lemma is exactly the same as the proof of Lemma 13.16.
Finally, in Lemma 13.15 we may replace A by A without trouble.

We can now interpret the quantities (13.14) and (13.15) as naturally appearing
as curvature terms of a suitable connection in SM .

Consider the co-frame of 1-forms {ω1, ω2, ψ} dual to the frame of vector fields
{X,X⊥, V }. The structure equations (3.5), (3.6) and (3.7) imply

dω1 = −ψ ∧ ω2eq:structure1eq:structure1 (13.16)

dω2 = ψ ∧ ω1eq:structure2eq:structure2 (13.17)

dψ = Kω1 ∧ ω2eq:structure3eq:structure3 (13.18)

Given A ∈ C∞(SM,Cn×n) with A∗ = −A we define a unitary connection A
on SM by setting

A := Aω1 − V (A)ω2.

Exercise 13.22. If A is a connection in M , show that

π∗A = Aω1 − V (A)ω2.

Lemma 13.23. With A defined as above we have

FA = −FA ω1 ∧ ω2 + ϕ(A)ψ ∧ ω2.
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Proof. Recall that FA = dA + A ∧ A. We compute

A ∧ A = (Aω1 − V (A)ω2) ∧ (Aω1 − V (A)ω2) = −[A, V (A)]ω1 ∧ ω2.

Next note

dA = X⊥(A)ω2 ∧ ω1 + V (A)ψ ∧ ω1 +Adω1

−XV (A)ω1 ∧ ω2 − V 2(A)ψ ∧ ω2 − V (A)dω2.

Using the structure equations (13.16) and (13.17) we see that

dA = −(XV (A) +X⊥(A)ω1 ∧ ω2 − (V 2(A) +A)ψ ∧ ω2

and the lemma follows.
�

13.8. Injectivity for connections and Higgs fields

We now wish to extend the key Theorem 13.12 to include a Higgs field. For
us this means an element Φ ∈ C∞(M,Cn×n). We will assume that Φ is skew-
Hermitian, i.e. Φ∗ = −Φ.

Theorem 13.24. Let (M, g) be a simple surface, A a unitary connection and
Φ a skew-Hermitian Higgs field. Suppose there is a smooth function u : SM → Cn
such that {

Xu+ (A+ Φ)u = f ∈ Ω−1 ⊕ Ω0 ⊕ Ω1,
u|∂SM = 0.

Then u = u0 and f = dAu0 + Φu0 = du0 +Au0 + Φu0 with u0|∂M = 0.THM:KEYB

Proof. We will prove that u is both holomorphic and antiholomorphic. If this
is the case then u = u0 only depends on x and u0|∂M = 0, and we have

du0 +Au0 = f−1 + f1, Φu0 = f0.

The first step, as in the proof of Theorem 13.12, is to replace A by a connection
whose curvature has a definite sign. We choose a real valued 1-form ϕ such that
dϕ = ωg, and let

As := A+ isϕId.

Here s > 0 so that As is unitary and i?FAs = i?FA−sId. We use Proposition 10.1
to find a holomorphic scalar function w ∈ C∞(SM) satisfying Xw = −iϕ. Then
us = eswu satisfies

(X +As + Φ)us = −eswf.
Let v :=

∑−1
−∞(us)k. Since (eswf)k = 0 for k ≤ −2

(X +As + Φ)v ∈ Ω−1 ⊕ Ω0.

Let h := [(X +As + Φ)v]0.
We apply the Energy identity in Lemma 13.20 with attenuation A := As + Φ

to the function v, which also satisfies v|∂SM = 0 to obtain

pestov_higgs_identitypestov_higgs_identity (13.19)

‖(X+As+Φ)(V v)‖2−(K V (v), V (v))+‖(X+As+Φ)v‖2−‖V [(X+As+Φ)v]‖2

− (?FAsv, V (v))−<((?dAsΦ)v, V (v))−<(Φv, (X +As + Φ)v) = 0.
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Note that ϕ(A) = −Φ and FA = ?FAs + ?dAsΦ, where dAsΦ = dΦ + [As,Φ]. It
was proved in Lemmas 13.15 and 13.21 that

‖(X +As + Φ)(V v)‖2 − (K V (v), V (v)) ≥ 0,pestov_higgs_intermediate1pestov_higgs_intermediate1 (13.20)

‖(X +As + Φ)v‖2 − ‖V [(X +As + Φ)v]‖2 = ‖h‖2 ≥ 0.pestov_higgs_intermediate2pestov_higgs_intermediate2 (13.21)

The term involving the curvature of As satisfies
pestov_higgs_intermediate3pestov_higgs_intermediate3 (13.22)

−(?FAsv, V (v)) =

−1∑
k=−∞

|k|(−i ? FAsvk, vk) ≥ (s− ‖FA‖L∞(M))

−1∑
k=−∞

|k|‖vk‖2.

Here we can choose s > 0 large to obtain a positive term. For the next term
in (13.19), we consider the Fourier expansion of dAsΦ = dAΦ = a1 + a−1 where
a±1 ∈ Ω±1. Note that ?dAΦ = −V (dAΦ) = −ia1 + ia−1. Then, since vk = 0 for
k ≥ 0,

((?dAΦ)v, V (v)) =

−1∑
k=−∞

(−ia1vk−1 + ia−1vk+1), ikvk)

=

−1∑
k=−∞

|k| [(a1vk−1, vk)− (a−1vk+1, vk)] .

Consequently

pestov_higgs_intermediate4pestov_higgs_intermediate4 (13.23) <((?dAΦ)v, V (v)) ≤ CA,Φ
−1∑

k=−∞

|k|‖vk‖2.

The last term in (13.19) requires the most work. We note that vk = 0 for k ≥ 0
and that (X +As + Φ)v ∈ Ω−1 ⊕ Ω0. Therefore

(Φv, (X +As + Φ)v) = (Φv−1, ((X +As + Φ)v)−1).

Recall that we may write X = η+ + η− where η+ = (X + iX⊥)/2 : Ωk → Ωk+1 and
η− = (X − iX⊥)/2 : Ωk → Ωk−1. Expand A = A1 + A−1 and ϕ = ϕ1 + ϕ−1 so
that As = (A1 + isϕ1Id) + (A−1 + siϕ−1Id) := a1 + a−1 where aj ∈ Ωj . Since As
is unitary we have a∗±1 = −a∓1.

The fact that (X +As + Φ)v ∈ Ω−1 ⊕ Ω0 implies that

η+v−2 + a1v−2 + Φv−1 = ((X +As + Φ)v)−1,

η+v−k−1 + a1v−k−1 + η−v−k+1 + a−1v−k+1 + Φv−k = 0, k ≥ 2.

Note that (η±a, b) = −(a, η∓b) when a|∂(SM) = 0. Using this and that Φ is skew-
Hermitian, we have

<(Φv−1, ((X +As + Φ)v)−1) = <(Φv−1, η+v−2 + a1v−2 + Φv−1)

= <
[
(η−v−1,Φv−2)− ((η−Φ)v−1, v−2) + (Φv−1, a1v−2) + ‖Φv−1‖2

]
.

We claim that for any N ≥ 1 one has

<(Φv−1, ((X +As + Φ)v)−1) = pN + qN



106 13. NON-ABELIAN X-RAY TRANSFORMS

where

pN := (−1)N−1<(η−v−N ,Φv−N−1),

qN := <
N∑
j=1

[
(−1)j((η−Φ)v−j , v−j−1) + (−1)j−1(Φv−j , a1v−j−1) + (−1)j−1‖Φv−j‖2

]
+<

N−1∑
j=1

(−1)j(a−1v−j ,Φv−j−1).

We have proved the claim when N = 1. If N ≥ 1 we compute

pN = (−1)N<((η+ + a1)v−N−2 + a−1v−N + Φv−N−1,Φv−N−1)

= (−1)N<
[
(Φv−N−2, η−v−N−1)− (v−N−2, (η−Φ)v−N−1)

+ (a1v−N−2 + a−1v−N + Φv−N−1,Φv−N−1)
]

= pN+1 + qN+1 − qN .

This proves the claim for any N .
Note that since ‖η−v‖2 =

∑
‖η−vk‖2, we have η−vk → 0 and similarly vk → 0

in L2(SM) as k → −∞. Therefore pN → 0 as N →∞. We also have

‖qN‖ ≤ CΦ

∑
‖vk‖2 +

∣∣∣∣∣∣
N∑
j=1

(−1)j([a−1,Φ]v−j , v−j−1)

∣∣∣∣∣∣ ≤ CA,Φ
∑
‖vk‖2.

Here it was important that the term in a−1 involving s is a scalar, so it goes away
when taking the commutator [a−1,Φ]. After taking a subsequence, (qN ) converges
to some q having a similar bound. We finally obtain

pestov_higgs_intermediate5pestov_higgs_intermediate5 (13.24) <(Φv, (X +As + Φ)v) = lim
N→∞

(pN + qN ) ≤ CA,Φ
∑
‖vk‖2.

Collecting the estimates (13.20)–(13.24) and using them in (13.19) shows that

0 ≥ ‖h‖2 + (s− CA,Φ)

−1∑
k=−∞

|k|‖vk‖2.

Choosing s large enough implies vk = 0 for all k. This proves that us is holomorphic,
and therefore u = e−swus is holomorphic as required. �

G: I still find this proof a bit baffling; but I am unable to write anything better.

We now rephrase Theorem 13.24 as an injectivity result for a matrix attenuated
X-ray transform. We let A(x, v) := Ax(v) + Φ(x) and we let IA,Φ = IA be the
associated attenuated X-ray transform.

Theorem 13.25. Let M be a compact simple surface. Assume that f : SM →
Cn is a smooth function of the form F (x) +αx(v), where F : M → Cn is a smooth
function and α is a Cn-valued 1-form. Let also A be a unitary connection and Φ a
skew-Hermitian matrix function. If IA,Φ(f) = 0, then F = Φp and α = dAp, where
p : M → Cn is a smooth function with p|∂M = 0.thm:injective_higgs

Proof. If IA,Φ(f) = 0, we know by Theorem 5.10 that uf is C∞ and satisfies

(X +A+ Φ)uf = −f ∈ Ω−1 ⊕ Ω0 ⊕ Ω1
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with uf |∂SM = 0. Thus by Theorem 13.24, uf only depends on x and upon setting
p = −u0, the result follows.

�

13.9. Scattering rigidity for connections and Higgs fields

In this section we extend the scattering rigidity result for unitary connections
in Theorem 13.11 to pairs (A,Φ), where A is a unitary connection and Φ is a
skew-Hermitian matrix valued function. We let CA,Φ = CA be the scattering data
associated with the attenuation A(x, v) = Ax(v) + Φ(x).

Theorem 13.26. Assume M is a compact simple surface, let A and B be two
unitary connections, and let Φ and Ψ be two skew-Hermitian Higgs fields. Then
CA,Φ = CB,Ψ implies that there exists a smooth u : M → U(n) such that u|∂M = Id
and B = u−1du+ u−1Au, Ψ = u−1Φu.thm:inverse

Proof. From Proposition 13.5 we know that CA,Φ = CB,Ψ means that there
exists a smooth U : SM → U(n) such that U |∂SM = Id and

eq:geqeq:geq (13.25) B = U−1XU + U−1AU,

where B(x, v) = Bx(v) + Ψ(x). We rephrase this information in terms of an atten-
uated ray transform. If we let W = U − Id, then W |∂SM = 0 and

XW +AW −WB = −(A− B).

Hence W is associated with the attenuated X-ray transform IE(A,B)(A−B) and if
CA,Φ = CB,Ψ, then this transform vanishes. Note that A− B ∈ Ω−1 ⊕ Ω0 ⊕ Ω1.

Hence, making the choice to ignore the specific form E(A,B) but noting that
it is unitary by Exercise 13.6, we can apply Theorem 13.24 to deduce that W only
depends on x. Hence U only depends on x and if we set u(x) = U0, then (13.25)
easily translates into B = u−1du + u−1Au and Ψ = u−1Φu just by looking at the
components of degree 0 and ±1.

�

Remark 13.27. Note that the theorem implies in particular that scattering
ridigity just for Higgs fields does not have a gauge. Indeed, if CΦ = CΨ, where Φ
and Ψ are two skew-Hermitian matrix fields, Theorem 13.26 applied withA = B = 0
implies that u = Id and thus Φ = Ψ.

13.10. Matrix holomorphic integrating factors

Unfortunately, it is not possible to extend the proof of Theorem 13.24 to the
case of non skew-Hermitian attenuations. The main issue is that the Pestov identity
given by Lemma 13.20 has a particularly nice form when A is skew-Hermitian.
While it is possible to derive a general Pestov identity, new terms appear and there
is a priori no clear way as to how to control them.

An alternative approach would be to try to prove the existence of certain matrix
holomorphic integrating factors. Note that the proof of Theorem 13.24 uses the
existence of scalar holomorphic integrating factors. In this section we try to explain
the main difficulties with this approach and state some open problems.

We start with a general definition.
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Definition 13.28. Let (M, g) be a compact oriented Riemannian surface and
let A ∈ C∞(SM,Cn×n) be given. We say that R : SM → GL(n,C) is a matrix
holomorphic integrating factor for A if

(1) R solves (X +A)R = 0;
(2) Both R and R−1 are fibre-wise holomorphic.

There is an analogous definition for anti-holomorphic integrating factors. The
existence of these integrating factors imposes conditions on A:

Lemma 13.29. If A admits a holomorphic integrating factor then A ∈ ⊕k≥−1Ωk.
If A admits both, holomorphic and anti-holomorphic integrating factors, then A ∈
Ω−1 ⊕ Ω0 ⊕ Ω1.

Proof. This follows right away from writing A = −X(R)R−1, since R−1 is
holomorphic and X(R) ∈ ⊕k≥−1Ωk. The second statement in the lemma follows
immediately.

�

Thus if we wish to use holomorphic and anti-holomorphic integrating factors
the attenutation A must be of the form A(x, v) = Ax(v) + Φ(x) where A is a
connection and Φ a matrix-valued field. The relevance of these type of integrating
factors can be seen in the following proposition.

Proposition 13.30. Let (M, g) be a non-trapping surface with strictly convex
boundary such that I0 is injective and I1 is solenoidal injective. Let (A,Φ) be a
pair given by a connection A and a matrix valued field Φ. If (A,Φ) admits holo-
morphic and anti-holomorphic integrating factors, then IA,Φ has the same kernel
as in Theorem 13.25.

Proof. Assume there is a smooth u ∈ C∞(SM,Cn) such that u|∂SM = 0 and
(X +A+ Φ)u = −f ∈ Ω−1 ⊕Ω0 ⊕Ω1. We wish to show that u = u0. For this it is
enough to show that u is both holomorphic and anti-holomorphic.

Let R be a matrix holomorphic integrating factor for A+ Φ. Since R−1 solves
XR−1 −R−1(A+ Φ) = 0 a computation shows that

X(R−1u) = −R−1f.

SinceR−1 is holomorphic, (R−1f)k = 0 for k ≤ −2. Thus if we set v =
∑−1
−∞(R−1u)k,

then v|∂SM = 0 and
Xv ∈ Ω−1 ⊕ Ω0.

Using the hypotheses on I0 and I1, we deduce that v = 0 and thus R−1u is holo-
morphic. It follows that u = RR−1u is also holomorphic since R is holomorphic.

An analogous argument using anti-holomorphic integrating factors shows that
u is anti-holomorphic and hence u = u0 as desired.

�

We can now state the following open problem.

Open Problem. Let (M, g) be a simple surface and let (A,Φ) be a pair, where
A is a connection and Φ is a matrix field. Do holomorphic (anti-holomorphic)
integrating factors exist for (A,Φ)?

Note that Proposition 12.5 gives a positive answer to this question when n = 1.
It suffices to take R := e−w where w is given by the proposition. In the non-abelian
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case n ≥ 2 we can no longer argue using an exponential. While we can certainly find
a holomorphic matrix W such that XW = A+ Φ, the exponential of W might not
solve the relevant transport problem since XW and W do not necessarily commute.

Exercise 13.31. Show that for any W ∈ C∞(SM,Cn×n) we have

eWX(e−W ) =

∫ 1

0

e−sW (XW )esW ds.

13.10.1. On the group of invertible first integrals. In this subsection we
study the group of all smooth R : SM → GL(n,C) such that XR = 0 for (M, g) a
simple surface.

We start with an auxiliary lemma.

Lemma 13.32. Let F : M → GL(n,C) be such that η−F = 0. Then we can
write F as

F = F1 · · ·Fr
where each Fj : M → GL(n,C) has the property that η−Fj = 0 and |Id−Fj(x)| < 1
for all x ∈M and 1 ≤ j ≤ r.lemma:GR

Proof. (Sketch) The set G of all F : M → GL(n,C) with η−F = 0 clearly
forms a group. In fact it is a connected topological group with the supremum norm.
Such groups are generated by any open neighbourhood of the identity. Considering
a neighbourhood of the form

U = {F ∈ G : ‖F − Id‖L∞ < 1}
the result follows.

�

We now prove:

Theorem 13.33. Let (M, g) be a simple surface and let F : M → GL(n,C)
with η−F = 0 be given. Then there exists a smooth R : SM → GL(n,C) such that

(1) XR = 0 and R0 = F .
(2) Both R and R−1 are fibre-wise holomorphic.

Proof. By Lemma 13.32 we may write F = F1 · · ·Fr where each Fj : M →
GL(n,C) is such that η−Fj = 0 and |Id− Fj(x)| < 1 for all x. Hence we can write
Fj = ePj , where Pj : M → Cn×n is such that η−Pj = 0. By the surjectivity of
I∗0 , there is a smooth Wj such that XWj = 0, Wj is fibre-wise holomorphic and
(Wj)0 = Pj . Now set

R := eW1 · · · eWr .

We claim that R has all the desired properties. Since each eWj is a first integral,
so is R. By construction, each eWj is holomorphic, hence so is their product. Since

R−1 = e−Wr · · · e−W1 ,

it follows that R−1 is also fibre-wise holomorphic. It remains to prove that R0 = F .
But since R is holomorphic we must have

R0 = (eW1)0 · · · (eWr )0.

But for each j, (eWj )0 = e(Wj)0 = ePj = Fj and the theorem is proved.
�

13.11. Carleman estimates in 2D? Stability estimate?
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