TIES435 Signal processing

Exercises #1

- 1. Express the sequence x[n]=1, $-\infty < n < \infty$, in terms of the unit step function $\mu[n]$.
- 2. Express the length-4 sequence $x[n] = \{1 \ 3 \ -2 \ 4\}, n = 0, 1, 2, 3, \text{ in terms of } \{1 \ 3 \ -2 \ 4$
 - a) unit sample $\delta[n]$
 - b) unit step function $\mu[n]$.

3.

2.5 Consider the following sequences:

$$x[n] = \{-4 \ 5 \ 1 \ -2 \ -3 \ 0 \ 2\}, \ -3 \le n \le 3$$

 $y[n] = \{6 \ -3 \ -1 \ 0 \ 8 \ 7 \ -2\}, \ -1 \le n \le 5$
 $w[n] = \{3 \ 2 \ 2 \ -1 \ 0 \ -2 \ 5\}, \ 2 \le n \le 8.$

The sample values of each of the above sequences outside the ranges specified are all zeros. Generate the following sequences: (a) c[n] = x[-n+2], (b) d[n] = y[-n-3], (c) e[n] = w[-n], (d) u[n] = x[n] + y[n-2], (e) $v[n] = x[n] \cdot w[n+4]$, (f) s[n] = y[n] - w[n+4], and (g) r[n] = 3.5y[n].

4. Analyze the block diagrams and develop the relation between y[n] and x[n].

5

- 2.15 Which ones of the following sequences are bounded sequences?
 - (a) $x[n] = A\alpha^n$, where A and α are complex numbers, and $|\alpha| < 1$,
 - (b) $y[n] = A\alpha^n \mu[n]$, where A and α are complex numbers, and $|\alpha| < 1$,
 - (c) $h[n] = C\beta^n \mu[n]$, where C and β are complex numbers, and $|\beta| > 1$,

(d)
$$g[n] = 4\cos(\omega_a n)$$
, (e) $v[n] = \left(1 - \frac{1}{n^2}\right)\mu[n-1]$.

6.

2.24 Compute the energy of the following sequences:

(a)
$$x_a[n] = A\alpha^n \mu[n], \ |\alpha| < 1, \ (b) \ x_b[n] = \frac{1}{n^2} \mu[n-1].$$

7.

2.38 The second derivative y[n] of a sequence x[n] at time instant n is usually approximated by

$$y[n] = x[n+1] - 2x[n] + x[n-1].$$

If y[n] and x[n] denote the output and input of a discrete-time system, is the system linear? Is it time-invariant?

- 8. Let's denote convolution by *. Show that
 - a) $\delta[n] * \delta[n] = \delta[n]$
 - b) $\delta[n] * \delta[n-m] = \delta[n-m]$
 - c) $\delta[n-m]*\delta[n-r] = \delta[n-m-r]$

9.

2.65 Determine the overall impulse response of the system of Figure P2.3, where the impulse responses of the component systems are: $h_1[n] = 2\delta[n-2] - 3\delta[n+1]$, $h_2[n] = \delta[n-1] + 2\delta[n+2]$, and $h_3[n] = 5\delta[n-5] + 7\delta[n-3] + 2\delta[n-1] - \delta[n] + 3\delta[n+1]$.

Figure P2.3

MATLAB exercises

10.

M 2.1 (a) Using Program 2_2, generate the sequences shown in Figures 2.17 and 2.18. (b) Generate and plot the complex exponential sequence $-3.6e^{(-0.5+j\pi/4)n}$ for $0 \le n \le 82$ using Program 2_2.

```
% Program 2 2
% Generation of complex exponential sequence
a = input('Type in real exponent = ');
b = input('Type in imaginary exponent = ');
c = a + b*i;
K = input('Type in the gain constant = ');
N = input ('Type in length of sequence = ');
n = 1:N;
x = K*exp(c*n);%Generate the sequence
stem(n,real(x));%Plot the real part
xlabel('Time index n');ylabel('Amplitude');
title('Real part');
disp('PRESS RETURN for imaginary part');
pause
stem(n,imag(x));%Plot the imaginary part
xlabel('Time index n');ylabel('Amplitude');
title('Imaginary part');
```


11. Generate the sequences from b) to e) using Matlab.

```
(a) \tilde{x}_a[n] = e^{j0.5\pi n}, (b) \tilde{x}_b[n] = \sin(0.8\pi n + 0.8\pi), (c) \tilde{x}_c[n] = \text{Re}\left(e^{j\pi n/5}\right) + \text{Im}\left(e^{j\pi n/10}\right), (d) \tilde{x}_4[n] = 3\cos(1.3\pi n) - 4\sin(0.5\pi n + 0.5\pi), (e) \tilde{x}_5[n] = 5\cos(1.5\pi n + 0.75\pi) + 4\cos(0.6\pi n) - \sin(0.5\pi n).
```

12.

M 2.3 (a) Write a MATLAB program to generate a sinusoidal sequence $x[n] = A \sin(\omega_0 n + \phi)$, and plot the sequence using the stem function. The input data specified by the user are the desired length L, amplitude A, the angular frequency ω_0 , and the phase ϕ where $0 < \omega_0 < \pi$ and $0 \le \phi \le 2\pi$. Using this program, generate the sinusoidal sequences shown in Figure 2.16.

(see the Figure 2.16 in the next page)

Figure 2.16: A family of sinusoidal sequences given by $x[n]=1.5\cos\omega_0\pi$: (a) $\omega_0=0$, (b) $\omega_0=0.1\pi$, (c) $\omega_0=0.2\pi$, (d) $\omega_0=0.8\pi$, (e) $\omega_0=0.9\pi$, (f) $\omega_0=\pi$, (g) $\omega_0=1.1\pi$, and (h) $\omega_0=1.2\pi$.