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Time-Domain Representations ofTime Domain Representations of 
Discrete-Time Signals and Systems

• Time-domain representation of a 
discrete-time signal as a sequence of 
numbers

• Basic sequences and operations on 
sequences

• Discrete-time systems in processing of 
discrete-time signals
Linear and time-invariant systems
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Discrete Time SignalsDiscrete-Time Signals
• Sequence {x[n]} can be considered as a periodically q { [ ]} p y

sampled continuous-time signal xa(t)
x[n]
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2,...1,0,1,2,...,n)()(][ −−=== = nTxtxnx anTta

• Sampling interval: T
S li f F 1/T

,,,,,,)()(][ = anTta
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• Sampling frequency: FT=1/T
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Digital SignalsDigital Signals
• Digital signalDigital signal

Discrete-time and discrete-valued sequence 
of numbers

• Digital signal processing
The sequence is transformed to anotherThe sequence is transformed to another 
sequence by means of arithmetic operations
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Types of SequenceTypes of Sequence
• Finite-duration or finite-length sequence:

Defined in the interval N <n<N where N and N areDefined in the interval N1<n<N2, where N1 and N2 are 
finite and N2 >N1 
Length (duration): N= N2 -N1+1

• Infinite-duration or infinite-length sequence:
a) Right-sided sequence: x[n]=0, n<N1

b) L ft id db) Left-sided sequence: x[n]=0, n>N2
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Operations on Sequences: 
Basic Operations

• Product (modulation) operation:

M d l t ×x[n] y[n]– Modulator x[n] y[ ]

w[n] ][][][ nwnxny ⋅=

• An application is in forming a finite-length sequence 
from an infinite-length sequence by multiplying the 
latter with a finite-length sequence called an window 
sequence

• Process called windowing
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• Process called windowing
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Operations on Sequences:Operations on Sequences: 
Basic Operations

• Addition operation:

][][][+– Adder ][][][ nwnxny +=x[n]

w[n]

+

[ ]

• Multiplication operation:

A
x[n] ][][ nxAny ⋅=– Multiplier
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Operations on Sequences: 
Basic Operations

• Time-shifting operation: ][][ Nnxny −=Time-shifting operation:
where N is an integer

• If N > 0, it is delaying operation

][][ Nnxny

, y g p

– Unit delay 1−z y[n]x[n] ][][ 1−= nxny

• If N < 0, it is an advance operation

– Unit advance y[n]x[n] z
][][ 1+= nxny
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][][ 1+= nxny
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Operations on Sequences:Operations on Sequences: 
Basic Operations

• Time-reversal (folding) operation:

][][ nxny

• Branching operation:  Used to provide multiple 

][][ nxny −=

g p p p
copies of a sequence

x[n] x[n]x[n] x[n]

x[n]
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Combinations of BasicCombinations of Basic 
Operations

• Example:
A iAveraging 
filter

]3[]2[]1[][][ +++ nxnxnxnxny αααα ]3[]2[]1[][][ 4321 −+−+−+= nxnxnxnxny αααα
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Sampling Rate Alteration: p g
Basic Operations

• Employed to generate a new sequence y[n]
with a sampling rate F’T higher or lower than p g T g
that of the sampling rate FT of a given 
sequence x[n]

TF '
• Sampling rate alteration ratio is:

T

T
F
FR =

• If R > 1, the process called interpolation
• If R < 1, the process called decimation
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Sampling Rate Alteration: 
Basic Operations

• In up-sampling by an integer factor L > 1• In up-sampling by an integer factor L > 1,
L - 1 equidistant zero-valued samples are 
inserted by the up-sampler between eachinserted by the up-sampler between each 
two consecutive samples of the input 
sequence x[n]:q [ ]

⎩
⎨
⎧ ±±=

=
otherwise0

,2,,0],/[
][

LLLnLnx
nxu

⎩ otherwise,0

L][nx ][nxu
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Sampling Rate Alteration: Sa p g ate te at o
Basic Operations

• An example of the up-sampling operation

l d bI t S
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Sampling Rate Alteration:Sampling Rate Alteration: 
Basic Operations

• In down-sampling by an integer factor
M >1, every M-th samples of the input , y p p
sequence are kept and M -1 in-between 
samples are removed:

][][ nMxny =

][nx ][nyM
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Sampling Rate Alteration:Sampling Rate Alteration: 
Basic Operations

• An example of the down-sampling operation
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Periodic SequencesPeriodic Sequences

• Periodicity: xp[n]=xp[n+kN],  for all n
• The sequence xp[n] is periodic with period N where N is 

iti i t d k i i ta positive integer and k is any integer
• The fundamental period Nf is the smallest N for which the 

above equation holdsq
• Notice! Sampling of a periodic continuous-time signal

does not guarantee the periodicity of the
l d
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sampled sequence
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Example: Sinusoidal Sequences
)12/2cos(][ nnx π=

p q

• Periodic, N=12

)31/8cos(][ nnx π=

• Periodic, N=31

)6/cos(][ nnx =

Not periodic

17

• Not periodic
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Classification of SequencesClassification of Sequences
• A sequence is bounded if ∞<≤ xBnx ][q

• A sequence is absolutely summable if
∞

A i bl if

∞<∑
−∞=n

nx ][

• A sequence is square- summable if

∞<∑
∞

nx 2][∑
−∞=n

][

• The energy of a sequence is ∑
∞

= nxE 2][

© 2009 Olli Simula 18

−∞=n
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Some Basic SequencesSome Basic Sequences
• Unit sample sequenceUnit sample sequence

⎨
⎧ =

=
0,1

][
n

nδ
1

⎩
⎨ ≠ 0,0

][
n n0

• Unit step sequence

⎧ 1

⎩
⎨
⎧

<
≥

=
0,0
0,1

][
n
n

nμ
1

n0

. . .
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Relations between Basic SequencesRelations between Basic Sequences
• Unit sample and unit step sequences are p p q

related as follows:

∑
n

k][][ δ∑
−∞=

=
k

kn ][][ δμ

]1[][][ −−= nnn μμδ

The above relations can be implemented with• The above relations can be implemented with 
simple computational structures consisting of 
basic arithmetic operations
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Relations between Basic SequencesRelations between Basic Sequences
• The unit sample is the first difference of the 

it tunit step:
]1[][][ −−= nnn μμδ

1 ][ ][δ1

n0

. . .][nμ +
-

][nμ ][nδ

1

n0 1

. . .]1[ −nμ D

n0  1
1

n0

][nδ ]1[ −nμ

Realization
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Relations between Basic SequencesRelations between Basic Sequences
• Unit step is the running sum of the unit sample:

1

∑
−∞=

=
n

m
mn ][][ δμ ][]1[][][

1

nnnm
n

m
δμδδ +−=+= ∑

−

−∞=

+
][nμ][nδ

D

]1[ −nμ

Realization
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Basic Operations on SequencesBasic Operations on Sequences

][
• Addition: ++

][1 nx

][2 nx
][][ 21 nxnx +

• Multiplication: ][nx ][nax
a

p

Unit delay:• Unit delay: DD][nx ]1[ −nx
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Exponential and Sinusoidal SequencesExponential and Sinusoidal Sequences
• Complex exponential sequence nAnx α=][

where A and α are complex

][ )()( 0000 φωσωσφ == ++ eeAeeAnx njnnjj

[ ])sin()cos(

][

00
0 φωφωσ +++=

==

njneA

eeAeeAnx
n
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Real Exponential SequencesReal Exponential Sequences
• With both A and α real, the sequence reduces 

t l ti lto a real exponential sequence

• A real sinusoidal sequence: x[n]=Acos(ω0 n+φ)
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A Family of Sinusoidal Sequences
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The Sampling ProcessThe Sampling Process
• A discrete-time sequence is developed by 

uniformly sampling the continuous-time signal xa(t)

)()(][ nTxtxnx anTta == = )()(][ anTta =

• The time variable -time t is related to the discrete 
time variable n only at discrete-time instants ttime variable n only at discrete-time instants tn

2
n

n
F
nnTt π

Ω
===

frequency)angular(sampling2and
frequency) (sampling/1with T

TT

F
TF

F

π=Ω
=

Ω
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frequency)angular  (sampling2and TT Fπ=Ω
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The Sampling ProcessThe Sampling Process
• Consider )cos()( 0 φ+Ω= tAtxa 0a

• Now )cos(][ 0 φ

⎞⎛

+Ω= nTAnx

)cos(2cos 0
0 φωφπ

+=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

Ω
Ω

= nAnA
T

where T
T

0
0

0
2

Ω=
Ω
Ω

=
πω

• ω 0 is the normalized angular frequency 
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Example: Three Sinusoidal SequencesExample: Three Sinusoidal Sequences

)60(][
1

)4.1cos(][
)6.0cos(][
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][)6.0cos())6.02cos((][ 12 ngnnng ==−= πππ

time

][)6.0cos())6.02cos((][ 13 ngnnng ==+= πππ
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The Aliasing PhenomenonThe Aliasing Phenomenon
• In general, the family of continuous-time sinusoids 

,...2,1,0))cos(()( 0, ±±=+Ω+Ω= ktkAtx Tka φ

lead to identical sampled signalslead to identical sampled signals
))cos(()( 0, nTkAnTx Tka

⎞⎛⎞⎛

+Ω+Ω= φ

2cos)(2cos 00 nAnkA
TT

T
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

Ω
Ω

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

Ω
Ω+Ω

= φπφπ

][)cos( 0 nxnA =+= φω

• The phenomenon is called aliasing
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Arbitrary SequenceArbitrary Sequence
x[n]

x[1]x[-3]

-7   -6   -5  -4   -3   -2    -1    0    1    2    3   4     5     6    7 n
x[4]

• An arbitrary sequence x[n] can be expressed  
as a superposition of scaled versions of p p
shifted unit impulses, δ[n-k]
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Arbitrary SequenceArbitrary Sequence
x[n]

x[1][ 3] x[1]x[-3]

-7   -6   -5  -4   -3   -2    -1    0    1    2    3   4     5     6    7 n

x[4]

]3[]3[ +− nx δ ]1[]1[ −nx δ ]4[]4[ −nx δ=][nx + -

∑
+∞

∞=

−=
k

knkxnx ][][][ δ• In general:
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Discrete Time S stemsDiscrete-Time Systems
Di t ti][nx ][nyDiscrete-time

system
Output sequenceInput sequence

Single-input single-output system

O t t i t d ti ll• Output sequence is generated sequentially, 
beginning with a certain time index value n

A certain class of discrete-time systems, 
linear and time invariant (LTI) systems 
will be discussed
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LinearityLinearity
A linear s stem is a s stem that possesses• A linear system is a system that possesses 
the important property of superposition

Additivity:
The response to x1[n]+x2[n]  is  y1[n]+y2[n] 1 2 1 2

Scaling or homogeneity:
Th t [ ] i [ ]The response to ax1[n] is ay1[n] 
where a is any complex constant
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Linearity
C bi i th t ti f• Combining the two properties of 
superposition into a single statement
Di t tiDiscrete-time:

][][][][ 2121 nbynaynbxnax +→+
where a and b are any complex constants

][][][][ 2121 yy

The superposition property holds for 
linear systems
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linear systems
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LinearityLinearity
a][ny ][nay

][][ 21 nbynay ++
T[  ]

][1 ny
][1 nx

][1 nay

b

T[  ]][2 nx
][2 ny ][2 nby

a ][1 nax

+

][1 nx

b ][][ 21 nbynay +T[ ]
][2 nx

][2 nbx

b ][][ 21 yy
][][ 21 nbxnax +

T[  ]
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Ti I iTime Invariance
A t i ti i i t ( hift i i t)• A system is time-invariant (or shift-invariant) 
if a time shift in the input signal results in an 
identical time shift in the output signalidentical time shift in the output signal

( )][][ nxTny =

( )][][ 00 nnxTnny −=−

• For time-invariant systems the system 
properties do not change with time
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Time Invariance
• A time invariant discrete-time system

[ ]][i][ [ ]][sin][ nxny =

A ti i t di t ti t• A time variant discrete-time system

][][ nnxny = ][][ nnxny
Coefficient n is changing with time

© 2009 Olli Simula 38T-61.3010 Digital Signal Processing; 
Mitra 3rd Edition: Chapter 2



CausalityCausality
• In a causal discrete-time system the output 

sample y[n ] at time instant n depends only onsample y[n0] at time instant n0 depends only on 
the input samples x[n] for n<n0 and does not 
depend on input samples for n>n0depend on input samples for n n0

• If y1[n] and y2[n] are the responses of a causal 
system to two inputs u1[n] and u2[n], respectively, 
then 

Nnnunu <= for,][][ 21

implies that
Nnnyny <= for,][][ 21
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StabilityStability
• A discrete-time system is stable if and only if, for 

every bounded input, the output is also boundedevery bounded input, the output is also bounded 
• If the response to x[n] is the sequence y[n], and if  

Bnx ≤][ xBnx ≤][

for all values of n, then

yBny ≤][

for all values of n, where Bx and By are finite , x y
constants

Bounded-input bounded-output (BIBO) stability
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Bounded input bounded output (BIBO) stability
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Impulse and Step ResponseImpulse and Step Response

][h][nx ][ny][nh

Unit sample response or ( nit) imp lse response

][][][][ hδ

• Unit sample response or (unit) impulse response
is the response of the system to a unit impulse  

][][];[][ nhnynnx == δ
• Unit step response or step response is the output 

sequence when the input sequence is the unit step  

][][];[][ nsnynnx == μ
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ConvolutionConvolution
• Linearity: The response of a linearLinearity: The response of a linear 

system to x[n] will be the superposition 
of the scaled responses of the systemof the scaled responses of the system 
to each of these shifted impulses

• Time invariance: The responses of a• Time invariance: The responses of a 
time-invariant system to time-shifted 
unit impulses are the time-shiftedunit impulses are the time-shifted 
versions of one another
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ConvolutionConvolution

• The unit impulse response of a system 
is h[n]

T(  )][nδ ][nh( )

• The unit impulse response h[n] is theThe unit impulse response h[n] is the 
response of the system to a unit impulse
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Convolution

( )][][ nxTny = ⎟
⎠

⎞
⎜
⎝

⎛
−= ∑

∞

k
knkxT ][][ δ
⎠⎝ −∞=k

( )∑
∞

−= knkxTny ][][][:Additivity δ( )∑
−∞=k

y ][][][y

( )∑
∞

−= knTkxny ][][][:yHomogeneit δ∑
−∞=k

∑
∞

−∞=

−=−
k

knhkxny ][][][:invarianceShift
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Basic Properties ofBasic Properties of 
LTI Systems

• The Commutative PropertyThe Commutative Property
• The Distributive Property

The Associative Property• The Associative Property
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The Commutative PropertyThe Commutative Property

][*][][*][ hh ][*][][*][ nxnhnhnx =

L t k k b tit ti t l ti

∑
∞

• Let r=n-k or k=n-r; substituting to convolution 
sum:

∑
−∞=

=−=
k

knhkxnhnx ][][][*][

∑
∞

−∞=

=−
r

nxnhrhrnx ][*][][][
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The Commutative PropertyThe Commutative Property

][ ][][nh][nx ][ny][nh

][nx ][ny][nh

• The output of an LTI system with input x[n] and 
unit impulse response h[n] is identical to the 
output of an LTI system with input h[n] and unit 
impulse response x[n] 
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The Distributive PropertyThe Distributive Property

( )][][*][ hh( ) =+ ][][*][ 21 nhnhnx

][*][][*][ hh

• The distributive property has a useful

][*][][*][ 21 nhnxnhnx +=

• The distributive property has a useful 
interpretation in terms of system 
interconnectionsinterconnections

=> PARALLEL INTERCONNECTION
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The Distributive PropertyThe Distributive Property

][ny][nx ][][ 21 nhnh +

][nh
][1 ny

][nx +

][nh

][1 nh
][ny

][2 nh
][2 ny

© 2009 Olli Simula 49T-61.3010 Digital Signal Processing; 
Mitra 3rd Edition: Chapter 2



The Associative PropertyThe Associative Property

( )][*][*][ hh( ) =][*][*][ 21 nhnhnx

( ) ][*][*][ nhnhnx

• As a consequence of associative property the

( ) ][*][*][ 21 nhnhnx=

• As a consequence of associative property the 
following expression is unambiguous

][*][*][][ 21 nhnhnxny =
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The Associative PropertyThe Associative Property

( )( )][*][*][][ 21 nhnhnxny =

][ny][nx ][*][ 21 nhnh

( ) ][*][][*][*][][ 2121 nhnynhnhnxny ==

][nx ][2 nh][1 nh
][1 ny

][ny
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Th A i ti P tThe Associative Property

• The associative property can be 
interpreted asinterpreted as

=> SERIES (OR CASCADE)> SERIES (OR CASCADE)
INTERCONNECTION OF SYSTEMS
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The Associative and 
Commutative Property

( ) ( )**** hhhh( ) ( )][*][*][][*][*][][ 1221 nhnhnxnhnhnxny ==

][ny][nx ][*][ 12 nhnh

( ) ][*][][*][*][][ 1212 nhnynhnhnxny ==
][2 ny

][nx ][2 nh ][1 nh ][ny
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The Properties of CascadeThe Properties of Cascade 
Connection of Systems

• The order of the systems in cascade can be 
i t h dinterchanged

• The intermediate signal values, wi[n], between 
th t diff tthe systems are different

• Different structures have different properties 
when implemented using finite precisionwhen implemented using finite precision 
arithmetic
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The Cascade Connection of 
Systems

][ny
][nx ][2 nh][1 nh

][1 ny
][ny

][ny][nx ][*][ 21 nhnh

][ny][nx ][*][ 12 nhnh

][2 ny
][nx ][2 nh ][1 nh ][ny
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The Cascade Connection ofThe Cascade Connection of 
Systems

• The properties of the cascade system depend 
on the sequential order of cascaded blocks

• The behavior of discrete-time systems with 
finite wordlength is sensitive to signal values, 

[ ] bet een the blockswi[n], between the blocks

• What is the optimal sequential order of 
d d bl k ?cascaded blocks ?
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Stability for LTI SystemsStability for LTI Systems
• Consider an input x[n] that is bounded in p [ ]

magnitude

|x[n]| < B for all n|x[n]| < B for all n

• The output is given by the convolution sum

∑
∞

−∞=

−=
k

knxkhny ][][|][|
−∞=k

∑
∞

−∞=

−≤
k

knxkhny |][||][||][|
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Stability for LTI SystemsStability for LTI Systems
• For bounded input |x[n k]| < B• For bounded input |x[n-k]| < B

nallforkhBny ∑
∞

≤ |][||][|
k −∞=

• The output y[n] is bounded if the the impulse 
response is absolutely summable

∞<∑
∞

kh ][

response is absolutely summable

∞<∑
−∞=k

kh ][

A SUFFICIENT CONDITION FOR STABILITY !
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Causality ConditionCausality Condition
• Let x1[n] and x2[n] be two input sequences with

021 for][][ nnnxnx ≤=

then the corresponding output sequence of 
a causal system

021 for][][ nnnyny ≤=

• The system is causal if and only if• The system is causal if and only if

0for0][ <= nnh
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Finite-Dimensional LTI 
Discrete-Time Systems

• An important subclass of LTI discrete-time is 
characterized by a linear constant coefficient 
difference equation

∑∑
==

−=−
M

k
k

N

k
k knxpknyd

00
][][

== kk 00

where x[n] and y[n] are, respectively, the input 
and output of the system and {dk} and {pk} areand output of the system and {dk} and {pk} are 
constants

• The order of the system is given by max{N,M}
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The order of the system is given by max{N,M}
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Finite-Dimensional LTI 
Discrete-Time Systems

• The output can be computed recursively byThe output can be computed recursively by 
solving y[n]

MN d[ ] ∑∑
==

−+−−=
M

k

k
N

k

k knx
d
pkny

d
dny

0 01 0
][][

provided that  d0 ≠ 0. 
• The output y[n] can be computed for all n ≥ n0 , 

k i th i t [ ] d th i iti l ditiknowing the input x[n] and the initial conditions 
y[n0-1], y[n0-2], ..., y[n0-N]

© 2009 Olli Simula 61T-61.3010 Digital Signal Processing; 
Mitra 3rd Edition: Chapter 2



Classification of LTI 
Discrete-Time Systems

• LTI discrete time are usually classified either• LTI discrete-time are usually classified either 
according to the length of the their impulse 
responses or according to the method ofresponses or according to the method of 
calculation employed to determine the output 
samples

• Impulse response classification:
– Finite impulse response (FIR) systems( ) y
– Infinite impulse response (IIR) systems
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Classification Based on 
Impulse Response

• If h[n] is of finite length i e• If h[n] is of finite length, i.e.,

h[n] = 0,   for n < N1 and n > N2 ,   with  N1 < N2

then it is known as a finite impulse response
(FIR) discrete-time system

• The convolution sum reduces to 

∑=
2

][][][
N

knxkhny

• y[n] can be calculated directly from the finite sum

∑
=

−=
1

][][][
Nk

knxkhny
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Classification Based on 
Impulse Response

• If h[n] is of infinite length then the system is• If h[n] is of infinite length then the system is 
known as an infinite impulse response (IIR) 
discrete-time systemdiscrete time system

• For a causal IIR discrete-time system with 
causal input x[n], the convolution sum can be p [ ],
expressed as 

∑ −=
n

knxkhny ][][][

y[n] can now be calculated sample by sample

∑
=

=
k

knxkhny
0

][][][
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y[n] can now be calculated sample by sample
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Classification Based on 
Output Calculation Process

• If the output sample can be calculatedIf the output sample can be calculated 
sequentially, knowing only the present and 
past input samples, the filter is said to be p p p
nonrecursive discrete-time system

• If, on the other hand, the computation of the 
output involves past output samples in addition 
to the present and past input samples, the filter 
i k i di t ti tis known as recursive discrete-time system

[ ] ∑∑ −+−−=
M

k
N

k knx
d
pkny

d
dny ][][
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y
d
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0 01 0
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Classification Based onClassification Based on 
Output Calculation Process

• A different terminology is used to classify 
causal finite-dimensional LTI systems in 
different applications, such as model-based 
spectral analysis

• The classes assigned here are based on the 
form of the linear constant coefficient difference 
equation modeling the systemequation modeling the system
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Moving Average (MA) ModelMoving Average (MA) Model

• The simplest model is described by the input-The simplest model is described by the input
output relation

[ ] ∑
M

knxpny ][

• A moving average (MA) model is an FIR

[ ] ∑
=

−=
k

k knxpny
0

][

A moving average (MA) model is an FIR 
discrete-time system

• It can be considered as a generalization of theIt can be considered as a generalization of the 
M-point moving average filter with different 
weights assigned to input samples
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Autoregressive ModelsAutoregressive Models

• The simplest IIR, called an autoregresive (AR) 
model is characterized by the input-output 
relation

[ ] [ ] ∑
N

kd ][

• The second type of IIR system called an

[ ] [ ] ∑
=

−−=
k

k knydnxny
0

][

The second type of IIR system, called an  
autoregresive moving average (ARMA) model 
is described by the input-output relationy p p

[ ] ∑∑
==

−−−=
N

k
k

M

k
k knydknxpny

00

][][
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Correlation of Signals
andand

Matched FiltersMatched Filters



Correlation of Signals

• There are applications where it is 
necessary to compare one reference y p
signal with one or more signals to 
determine the similarity between the pair y
and to determine additional information 
based on the similarity
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Example: CommunicationsExample: Communications
• In digital communications, a set of data 

symbols are represented by a set of unique 
discrete-time sequences

• If one of these sequences has been 
transmitted, the receiver has to determine 
which particular sequence has been receivedwhich particular sequence has been received

• The received signal is compared with every 
member of possible sequences from the setmember of possible sequences from the set

Correlation
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Example: Radar ApplicationsExample: Radar Applications
• Similarly, in radar and sonar applications, y, pp ,

the received signal reflected from the target 
is a delayed version of the transmitted signal 

• By measuring the delay, one can determine 
the location of the target

• The detection problem gets more complicated 
in practice, as often the received signal is 
corrupted by additive random noisecorrupted by additive random noise
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Correlation of SignalsCorrelation of Signals
Definitions
• A measure of similarity between a pair of energy 

signals, x[n] and y[n], is given by the cross-
correlation sequence rxy[l] defined by 

210][][][ ±±=−= ∑
∞

llnynxlr

• The parameter l called lag, indicates the 

...,2,1,0],[][][ ±±∑
−∞=

llnynxlr
n

xy

time-shift between the pair of signals
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Correlation of SignalsCorrelation of Signals
• Sequence y[n] is said to be shifted by l samples q y[ ] y p

to the right with respect to the reference 
sequence x[n] for positive values of l, and shifted 

f f fby l samples to the left for negative values of l
• The ordering of the subscripts xy in the definition 

f [l] ifi th t [ ] i th fof rxy[l] specifies that x[n] is the reference 
sequence which remains fixed in time while y[n] 
is being shifted with respect to x[n]is being shifted with respect to x[n]
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C l ti f Si lCorrelation of Signals
• If y[n] is made the reference signal and x[n] is y[ ] g [ ]

shifted with respect to y[n], the corresponding 
cross-correlation sequence is given by

∑∞

−∞=
−=

nyx lnxnylr ][][][

][][][ lrmxlmy xym
−=+=∑∞

−∞=

• Thus, ryx [l] is obtained by time-reversing rxy[l] 
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Correlation of SignalsCorrelation of Signals
• The autocorrelation sequence of x[n] is 

given by
∑∞

−∞=
−=

nxx lnxnxlr ][][][

obtained by setting y[n] = x[n] in the definition 
of the cross-correlation sequence rxy[l]y

• Note: The energy of the signal x[n] is 

xnxx nxr E∑∞
−∞= == ][][ 20
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Correlation and Convolution

• From the relation ryx[l] = rxy[-l] it follows that 
rxx[l] = rxx[-l] implying that rxx[l] is an even 
f ti f l [ ]function for real x[n]

• An examination of                               

∑∞

reveals that the expression for the cross-
∑∞

−∞=
−=

nxy lnynxlr ][][][

reveals that the expression for the cross
correlation looks quite similar to that of the 
linear convolution
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Convolution RevisitedConvolution Revisited
• The convolution of x[m] and h[m] was defined as

∑
∞

−∞=

−=
k

kmhkxmy ][][][
−∞=k

• Compare to correlation 

∑∞
ll ][][][

• Replacing now m by l and k by n we obtain

∑ −∞=
−=

nxy lnynxlr ][][][

Replacing now  m by l and  k by n , we obtain

∑∞

∞
−−=

nxy nlynxlr )]([][][
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Correlation and ConvolutionCorrelation and Convolution
• The expression for the cross-correlation is 

now similar to the convolution, i.e.,

][][)]([][][ lylxnlynxlr −∗=−−=∑∞

• The equations of correlation and convolution 

][][)]([][][ lylxnlynxlr
nxy ∑ −∞=

are the same, except the minus sign inside 
the summation
I t b t l l ti f th l ti• In step-by-step calculation of the convolution, 
the other sequence is time-reversed;
in correlation it is not
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Matched FilterMatched Filter
• The cross-correlation of x[n] with the reference 

signal y[n] can be computed by processing x[n] 
with an LTI discrete-time system of impulse 

[ ]response y[-n] 

][ ny −][nx ][nr][ ny][nx ][nrxy

• The impulse response, h[n], of the matched filter
i th ti d i f th f fis the time-reversed version of the of reference 
signal y[n] , i.e., h[n] = y[-n]
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Applications of Matched FiltersApplications of Matched Filters
• In matched filters, the impulse response of the 

filter is “matched” to the signal, or signal pattern 
of interest

• Applications: 
– Radar, the impulse response of the filter is the 

ti d i f th i l t b d t t dtime-reversed version of the signal to be detected
– Pattern recognition

Template matching in image anal sis i e s b– Template matching in image analysis, i.e., sub-
areas of the image are correlated with the desired 
template 
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Autocorrelation

• Likewise, the autocorrelation of x[n] can be 
computed by processing x[n] with an LTI 
discrete-time system of impulse response x[-n] 

][ nx −][nx ][nrxx
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