Discrete-Time
Fourier Transform



Introduction

* In time-domain, the input-output relation of a
linear and time-invariant (LTI) system is
characterized by the convolution

* An alternate description of a sequence In
terms of complex exponential sequences of
the form {e1*"} where w is the normalized
frequency variable

 The frequency domain representation of the
discrete-time sequences and discrete-time
LTI systems
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Continuous-Time Fourier

Transform

o Definition:

The CTFT of a continuous-time signal x,(¢) is
given by

X (jQ) = j:x ()e ™ dt

o Often referred to as Fourier spectrum or
simply the spectrum of the continuous-time

signal
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Continuous-Time Fourier

Transform
Definition:
The inverse CTFT of a Fourier transform
X, (7€) Is given by

x,(t) = iJ‘MX(jQ)etha’Q
277 ¥

Often referred to as Fourier integral
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The Continuous-Time
Fourier Transform Pair

Analysis

) . [ i
equation: Xa(JQ)—j_Ooxa(t)e dt

Synth_esis x (£) = i.rooXa (jQ)ethdQ
equation: 27T I

A CTFT pair is CTFT
also denoted as: x,(t) <« X (jQ)
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Continuous-Time Fourier Transform

The Fourier transform or Fourier integral X (j.(2)
of x (¢) Is also called the analysis equation

The inverse Fourier transform equation is called
the synthesis equation

For aperiodic signals, the complex exponentials
occur at a continuum of frequencies

The transform X (j€2) of an aperiodic signal x_(¢)
IS commonly referred to as the spectrum of

X, (1)
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Continuous-Time Fourier Transform

e Variable Qis real and denotes the continuous-
time angular frequency in radians

e In general, the CTFT Is a complex function of 2
Inthe range — oo < O <

* |t can be expressed in polar form as
X, (jQ) =|X,(jQ)e
where
0,() =argl{X, (O}
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Continuous-Time Fourier Transform
X, () =X, (jQ)e' ™

The quantity |X,(j€J)| is called the magnitude
spectrum
T

ne quantity 6,(<2) is called the phase
spectrum

e Both spectrums are real functions of (2
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Example 3.1

The Fourier transform
of a causal complex

exponential

e >0
x ()=
() {o, t<0

X (jQ) = Ie_“te_jmdt
0

1

= oa>0
a+ jQ
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The Frequency Response of an LTI

Continuous-Time System

* The output response of y,(¢) of an initially
relaxed linear, time-invariant continuous-time
system characterized by an impulse response
h,(t) for an input signal x,(¢) Is given by the
convolution integral

v ()= h,(t=)x, ()
e Applying CTFT to both sides
Y,(jQ)=H,(jQ)X,(jQ)

* H (jQ) Is the frequency response of the system
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The Discrete-Time
Fourier Transform

 The discrete-time Fourier transform (DTFT) of
a discrete-time sequence x[n] Is a representation
of the sequence In terms of the complex
exponential sequence {¢7?'} where w Is the real
frequency variable

« The DTFT representation of a sequence, if it
exists, Is unigue and the original sequence can
be computed from its DTFT by an inverse
transform operation

© 2009 Olli Simula T-61.3010 Digital Signal Processing; 11
Mitra 3rd Edition: Chapter 3



The Discrete-Time Fourier Transform

 The discrete-time Fourier transform (DTFT)
X(¢?) of a sequence x[n] Is defined by:

400

X(e’?) = Zx[n]e‘j “

n=—00

 The Fourier transforms of most practical
discrete-time sequences can be expressed In
terms of a sum of a convergent geometric series

 They can be summed in a simple closed form
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Example:

Consider a causal sequence:  x[n]=a"u[n],

The Fourier transform X(¢®) Is obtained as:

o0 o0
X(e’a’=§:a,u —]a)n:§: n—]a)n
1=—00 n=0
Q0
=Y (o) =
_ e l?
_—r 1-ce
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Mitra 3rd Edition: Chapter 3

‘a‘<1

13



Discrete-Time Fourier Transform (DTFT)

e As can be seen from definition, DTFT X(e¢®) of a
sequence x|[#z] Is a continuous function of @

e Unlike the continuous-time Fourier transform,
DTFT is a periodic function in @ with a period 2

+00 +00
X(ej(a)+27zk)) _ Zx[n]e—j(a)+27zk)n _ Zx[n]e—ja)ne—jZﬂkn

1=—00 Nn=—0o0

= Y x[n]le’™ =X(e/”), forallvaluesof k

n=—o0
where e7?#n =1
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Inverse Discrete-Time Fourier Transform
x[n] = 1 _TX(ejw)ejw”da)
27 =

* The inverse discrete-time Fourier transform can
be interpreted as a linear combination of
infinitesimally small complex exponential signals
of the form iefw "d0, Weighted by the complex

constant X(efw) over the angular frequency range
from —zto x
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The Discrete-Time
Fourier Transform (DTFT) Pair

Analysis equation, denoted by operator #{x[n]}:

X (e'?) = ix[n]e‘j“’”

Synthesis equation, denoted by operator F-1{x[n]}:

x[n] = 1 X(ejw)ejwnda)
272' 27T




Basic Properties of the DTFT

+00

X(e’”) = Zx[n]e‘j o

n=—0o0

e X(&%)Is a complex function the real variable o
X(E)=X,(")+ jX. (e/°)
X(e”)=|X ()", where O(w)=arg{X (e’ )}

e |X(¢9)|Is the magnitude function

¢ Ae¢?)is called the phase function
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Basic Properties of the DTFT

X (™) =| X (e’
In many applications, the Fourier transform
X(€?) Is called the Fourier spectrum
| X(e¢?)| Is called the magnitude spectrum and

A w) IS the phase spectrum

It is usually assumed that the phase function
A w) Is restricted to the principal value

—n<l(w)<rx
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Commonly Used DTFT Pairs

Sequence DTFT

o|n] < 1
1 > Z 270 (@ + 27k)
k=—o0
1
n <> .
uln] T
e’ " & 278(0 - w, + 27k)
k=—o0
. 1
o uln] (‘a‘ <1l) © —
1-ce
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DTFT Properties

 There are a number of important properties of
the DTFT that are useful in signal processing
applications

 These are listed here without proof

* Thelir proofs are straightforward

 The applications of some of the properties are
lustrated
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Table 3.1: DTFT Properties:
Symmetry Relations

Sequence Discrete-Time Fourier Transform

x[n] X (e7)
x|—n] X(e—imj
x*[—n] X*(e)?)

Re{x[n]}  Xes(e/®) = 7{X (/) + X=(¢e77/*))
jimx(a))  Xea(e?) = 7(X (/) — X*(e7/2))
Xexlit] -xreiﬁ'jm}

Xea[n) X im(ed™)

Note: Xeg(e/™) and Xiu(e/™) are the conjugate-symmetric and conjugate-antisymmetric
parts of Xie/™), respectively. Likewise, xc5[n] and xgy[n] are the conjugate-symmetric and
conjugate-antisymmetric parts of x[n], respectively.

x[n]: A complex sequence
Copyright © 2005, 5. K. Mitra
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Table 3.2: DTFT Properties:
Symmetry Relations

Sequence Discrete-Time Fourler Transform
x[a] X&) = Xeeled®) = jXimie!®)
xev [n] Xie(ed2)
Tod [7] J Xim (™)

X(ed®) = X*(e— /")
Xie(e/™) = Xpe(e™/%)
Symmetry relations Xim (8/%) = — X (e~ /%)
1X (e42)] = |X (e 1)
arg(X (e/)} = —arg[X (e~ 7))

Mote: xev[n] and xy4(n] denote the even and odd parts of x[n], respectively.
x[x]: A real sequence
Caopyright © 2005, 5. K. Mitra
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Important DTFT Theorems

 There are a number of important theorems of
the DTFT that are useful in analysis and
synthesis of discrete-time LTI systems

« Many algorithms in signal processing
applications are based on these theorems

* Thelir proofs are straightforward based on the
definitions

e Assume that:
F

gln] © G(ej”) and A|n] i) H(eja’)
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Table 3.4:General Properties of
DTFT

Type of Property Sequence Discrete-Time Fourier Transform

g[n] G(el™?)
h(n] H (e!™)
Linearity agln] + Bhln] aG(e/?) + BH(el®)
Time-shifting gln — ng] e—JWno G (el W)
Frequency-shifting el ol g[n] G (e_r‘ (m—wu})
Dilferentiation el ,fﬁ{eilm}
in frequency e d dew
Convolution glnl@h([n] G(e/®)H (el®)
Modulation glnlhln] Eﬁi' Jrf_r G{EIE]H{EJ'{W—E"J}dE
o 1 o ) )
Parseval’s relation Z glnlh*[n] = f Gle!YH* (e!™) de
2n J_o
o _ __H'——DC'
© 2009 Olli Simula T-61.3010 Digital Signal Processing;
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The Frequency Response of an
LTI Discrete-Time System

 Time-Domain:
An LTI discrete-time system is completely
characterized by its impulse response

sequence {4

e Transform-

n]}

Domain:

Alternative representations of an LTI discrete-
time system using the DTFT (and the z-

transform)

© 2009 Olli Simula
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The Freguency Response - Definition

* An important property of an LTI system is that
for certain types of input signals, called
eigenfunctions, the output signal is the input
signal multiplied by a complex constant

 We consider one such eigenfunction, the
complex exponential sequence

* |n general, for CT and DT systems:
— Continuous-time: e’ -> H(s) e*
— Discrete-time: z" -> H(z) z"
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The Frequency Response

Superposition property:

The response of an LTI system to a linear
combination of complex exponential signals
can be determined by knowing its response
to a single complex exponential signal

The response of the LTI system to a complex
exponential input is considered

Frequency Response Is a transform-domain
representation of the LTI discrete-time system

© 2009 Olli Simula T-61.3010 Digital Signal Processing;
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Complex Exponential Input

] —  Hnl — ] = ih[k]x[n—k] = h[n]* x[n]

f=—00

Input: qn]=€", —co<n<o

Output; y[n] — i h[k] eja)(n—k)

k=—o0
00) Q0
: ok ok
=/ > HKle "™ =xn] | Y Hkle”
k=—o0 k=—o0
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Mitra 3rd Edition: Chapter 3



The Frequency Response

Define: . i .
H(e') = Zh[n]e_f “

N=—00

o H(¢?) Is called the frequency response of the
LTI discrete-time system

o H(e¢?)is the DTFT of a[n]
 For a complex exponential input:

il = H(e")e"”
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The Response to a Complex Exponential

* For a fixed frequency w=ay: y[n]=H('™)e™"

* For a complex exponential input x[#] of angular
frequency a,, the output y[#] Is a complex
exponential sequence of the same angular
frequency o, weighted by a complex constant
H(ejwo)

 In general, the frequency response H(¢?) Is a
function of the angular frequency and can be
evaluated at all input frequencies w

o H(¢?) completely characterizes the behavior of an
LTI discrete-time system in frequency domain
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The Frequency Response

« H(e?) is a complex function of o with a period 27z

H(e™)=H, (") +jH,, (")
_ ‘ H(ejw)‘ /0@
where O(w)=arg{H(e’”)}
o |H(e?)| is called the magnitude response

* Aw)is called the phase response

© 2009 Olli Simula T-61.3010 Digital Signal Processing;
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The Frequency Response

* |n some cases, the magnitude function is
defined in decibels

G(w) = 20Iog10‘H (ef”)‘ dB

* G(w) Is called the gain function

 The negative of the gain function,
A(w) = -G(w) Is called the attenuation or

loss function
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Freqguency-Domain Characterization of
LTI Systems

Input-output relation in frequency-domain

Y(/”)=H(e*) X () =(ih[k]e"“’“]X (e")

k=—0o0

Convolution In the time-domain transforms into
product in the frequency-domain

Y(e’”)
X(e’”)

H(e”) =

The frequency response of an LTI discrete-time
system is the ratio of Y(e%) and X(e!®)
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Frequency Responses of LTI
FIR Discrete-Time Systems

 Input-output relation of the LTI FIR discrete-time
system

y[n] = Zzlh[k]x[n —k], N/ <N,

k=N,
* Applying the discrete-time Fourier transform (DTFT)
results in the transform-domain input-output relation

Y(e'?) = [ Zzh[k] e/ * ]X (e’”)=H(e’) X (')

k:Nl

where Y(el®) and X(el?) are the DTFTs of the output
and input sequences
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Frequency Responses of LTI
FIR Discrete-Time Systems

* The frequency response of the LTI FIR
discrete-time system is thus

H(ej“’ ): i W[kle /™"

k:Nl

* The frequency response of the LTI FIR discrete-
time system is a polynomial in ¢7¢
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Frequency Responses of LTI
lIR Discrete-Time Systems

 Input-output relation of the LTI IIR discrete-time
system

> dln=k1=)_p{n—k]

* Applying the discrete-time Fourier transform
(DTFT) results in the transform-domain input-
output relation

N M
Za’ke_j Y (') = Z e’ X ()
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Frequency Responses of LTI
lIR Discrete-Time Systems

* The frequency-domain relation can be written in
the form

[deej * ]Y (e/”) = [Z pe’™ jX (e’?)

k=0

V) Dope
X@) S e

* The frequency response of the LTI IIR discrete-
time system is a polynomial in e7¢

» Solving the ratio H(e’”) =
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Example: Simple IIR Discrete-Time System

e Consider the first order recursive or infinite impulse
response (lIR) filter
v[n]—ay[n -1 =x[n], with |a|<1

e The frequency response of this system is obtained by
the Fourier transform

Y(e'?)+aY(e!?)e’” = X (e/®)

Y(e’?) 1

 Solving the ratio:  H(e/?) = A _
X)) 1-ae’”

e The impulse response is:  A[n]=a" u[n]
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Response to a Causal Exponential
Sequence

* In practice, the excitation to an LTI discrete-time
system is usually a causal sequence applied at
some finite sample index n = n,

e The output for such an input when observed at
sample instants beginning at n = n, will consist of
a transient part along with a steady-state
component

e Assume that the input is a causal exponential
sequence applied at n =0, I.e., x[n] = e/®u|n]
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Response to a Causal Exponential

Sequence
* For n >0, the output is obtained using the
convolution sum

1= Y Hlk] &P uln k] [Zh[k] }

k=0
as u[n-k] =0 fork>n
* Rewriting the last expression of the equation

y[l’l] [Zh[k] ]a)kJ jan [Zh[k] ]a)k] jn

k=n+1
= H(e’?) e/ ( Zh[k] ej“’kJeja’”, n>0
k=n+1
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Response to a Causal Exponential
Sequence

y[n]zH(ej“’) e’ —( ih[k] ejwk]ejw”, n>0
k=n+1

- 7 N—

/Y V‘\

Steady-state response  Transient response

V., [n]:H(ej”) e’ Vir [” [ Zh[k] ka]

k=n+1

* The effect of the transient response on the
output Is

RROIEDWOEEEDWIE B WL

k=n+1 k=n+1
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Response to a Causal Exponential

Sequence
v [n] | =] YAk e < Z|h[k]|<2|h[k]|
k=n+1 k=n+1
e For a causal and stable IIR LTI discrete-time

system, the impulse response Is absolutely
summable

» As a result the transient response y, [#] IS a
bounded sequence

+ Moreover,asn—o, » " lh[k]|—0
the transient response decays to zero as n
gets very large
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Response to a Causal Exponential
Sequence

e In most practical cases, the transient
response becomes negligibly small after
some finite amount of time, and the system
can be assumed to be in a steady-state

 For a causal FIR LTI discrete-time system
with an impulse response of length N+1,
h[n]=0 for n > N and, thus, y, [#]=0 for n > N-1

e It should be noted that transients will occur
whenever an input is applied or changed
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The Concept of Filtering

o Adigital filter is a discrete-time system that passes
certain frequency components in an input sequence

without any distortion and blocks other frequency
components

 The key to the filtering process is the inverse
discrete-time Fourier transform which expresses an
arbitrary sequence as a linear weighted sum of an
Infinite number of exponential (sinusoidal) sequences

* By appropriately choosing the frequency response
(or its magnitude) of the LTI digital filter the individual
sinusoidal components can be attenuated or

amplified independent of each other
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The Concept of Filtering

e Consider a real coefficient LTI discrete-time system
characterized by a magnitude function

‘H(ejw)‘ ~ {L ok,

0, ool

* An input sequence
x[n] = Acos(w,n) + Bcos(w,n),
with O<w, <o, <o, <7

IS applied to the system
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The Concept of Filtering

* The output sequence is given by

yn] = AH(e™)|cosl@yn+0(e))
+BH('™)

cos(@,n+6(w,))

« Making use of |H(el?)| the output is
Mn]= AH (™) cosn +0(e))
 The LTI system is a lowpass filter
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Response to a Sinusoidal Seguence

e Consider the sinusoidal input to an LTI discrete-
time system with the frequency response
H(e]w)le(er)lejg(w)

xn = ACOS(a)On + ¢)

yln]= A‘H(ejwo) cos(ayn + O(w,) + ¢)

* The output signal y[n] has the same sinusoidal
waveform as the input x[»] with two differences
— The amplitude is multiplied by the constant vaIue‘H(ej%)
— The output has a phase lag by amount 8(®,)
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Phase and Group Delays
o Let us rewrite the output to a sinusoidal input as

.
co{a)o(n - H(w")j + ¢
Y

Wy

ynl= A/ (™)

cos(a)o (n -7, (a)o))+ ¢)

0
(@) is called the phase delay

— A‘H(ejwo)

where 7(w,)=-—
2

 The output y[n] Is a time-delayed version of the
Input x[~»]
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Example: Linear combination of sinusoidal signals

Consider the signal: x(z) = 1+%cos 271t + COS 4t +§cos 6.t

The same sinusoidal components with phase shifts:

x(t) =1+ % COS(27t + ¢y ) + cos(4nt + ¢y ) + % cos(67t + ¢3)
@) &=0,=0;=0

\/V\/\/V\/\/V\/\/V\/\/V\/\ RO
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Example: Linear combination of sinusoidal signals

x(1) =1+ % COS(27t + ¢y ) + COS(47t + ¢y ) + % cos(67 + ¢3)

/\V[\V/’\"[\V[\V[!\V/\V/\V/\V/\\i _t © @1 g 9§2r;d >
/\[\ /\/\ /\/\ /\[\ /\/\ (d) @ : 17202¢r2ad 41,

The resulting signals differ significantly for
different relative phases
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The Group Delay

* When the input signal contains many sinusoidal
components with different frequencies that are not
harmonically related, each component will go
through different phase delays when processed by a
frequency-selective LTI discrete-time system

 The delay Is determined using a different parameter
called the group delay defined as
do(w)

A

 Group delay has a physical interpretation In
calculating the responses of discrete-time systems
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The Group Delay

o Group delay function provides a measure of the
linearity of the phase response

 For a moving average filter of length M, the phase
response is linear

M-1
O(w)=———w
2
and the group delay is constant
M-1
7, (w) :—2
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