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IntroductionIntroduction
• In time domain the input output relation of a• In time-domain, the input-output relation of a 

linear and time-invariant (LTI) system is 
characterized by the convolutiony

• An alternate description of a sequence in 
terms of complex exponential sequences of p p q
the form {e-jωn} where ω is the normalized 
frequency variable

• The frequency domain representation of the 
discrete-time sequences and discrete-time 
LTI t

© 2009 Olli Simula T-61.3010 Digital Signal Processing; 
Mitra 3rd Edition: Chapter 3

2

LTI systems



Continuous-Time Fourier 
Transform

• Definition:Definition:
The CTFT of a continuous-time signal xa(t) is 
given bygiven by

∫
+∞

∞−

Ω−=Ω dtetxjX tj
aa )()(

• Often referred to as Fourier spectrum or 
simply the spectrum of the continuous-time 
signal 
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Continuous-Time Fourier 
Transform

• Definition:Definition:
The inverse CTFT of a Fourier transform 
Xa(jΩ) is given byXa(jΩ) is given by

∫
+∞ Ω ΩΩ= dejXtx tj

a )(
2
1)(

• Often referred to as Fourier integral

∫ ∞−
ja )(

2
)(

π

Often referred to as Fourier integral
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The Continuous-Time 
Fourier Transform Pair

∫
+∞

∞−

Ω−=Ω dtetxjX tj
aa )()(

Analysis 
equation:

∫
∞+1S th i

q

∫
∞+

∞−

Ω ΩΩ= dejXtx tj
aa )(

2
1)(
π

Synthesis 
equation:

)()(
CTFT

Ω↔ jXtx
A CTFT pair is 
also denoted as:
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)()( Ω↔ jXtx aaalso denoted as:



Continuous Time Fourier Transform

• The Fourier transform or Fourier integral Xa(jΩ) 

Continuous-Time Fourier Transform

g a(j )
of xa(t) is also called the analysis equation

• The inverse Fourier transform equation is called q
the synthesis equation

• For aperiodic signals, the complex exponentials 
occur at a continuum of frequencies

• The transform Xa(jΩ) of an aperiodic signal xa(t) 
is commonly referred to as the spectrum of
xa(t)
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Continuous Time Fourier TransformContinuous-Time Fourier Transform

• Variable Ω is real and denotes the continuous-Variable Ω is real and denotes the continuous
time angular frequency in radians

• In general, the CTFT is a complex function of Ω
in the range

• It can be expressed in polar form as                     
∞<Ω<∞−

)()()( ΩΩ=Ω aj
aa ejXjX θ

wherewhere
{ })(arg)( Ω=Ω jX aaθ
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Continuous Time Fourier TransformContinuous-Time Fourier Transform

)()()( ΩΩ=Ω aj
aa ejXjX θ

• The quantity |Xa(jΩ)| is called the magnitude 
spectrumspectrum

• The quantity θa(Ω) is called the phase 
spectrumspectrum

• Both spectrums are real functions of Ω
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Example 3.1Example 3.1
The Fourier transform 
of a causal complex

α22
α1

of a causal complex 
exponential

⎧
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The Frequency Response of an LTI 
Continuous-Time System

• The output response of ya(t) of an initially a
relaxed linear, time-invariant continuous-time 
system characterized by an impulse response 
h ( ) f i t i l ( ) i i b thha(t) for an input signal xa(t) is given by the 
convolution integral

∫
+∞

• Applying CTFT to both sides 
∫ ∞−

−= τττ dxthty aaa )()()(

pp y g
)()()( ΩΩ=Ω jXjHjY aaa

• H (jΩ) is the frequency response of the system
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The Discrete-Time 
Fourier Transform

• The discrete-time Fourier transform (DTFT) of 
a discrete-time sequence x[n] is a representation 
of the sequence in terms of the complexof the sequence in terms of the complex 
exponential sequence {e-jωn} where ω is the real 
frequency variableq y

• The DTFT representation of a sequence, if it 
exists, is unique and the original sequence can 
b t d f it DTFT b ibe computed from its DTFT by an inverse 
transform operation
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The Discrete-Time Fourier TransformThe Discrete-Time Fourier Transform

• The discrete-time Fourier transform (DTFT)The discrete time Fourier transform (DTFT) 
X(ejω) of a sequence x[n] is defined by:

+∞

∑
+∞

−∞=

−=
n

njj enxeX ωω ][)(

• The Fourier transforms of most practical 
discrete-time sequences can be expressed in 
terms of a sum of a convergent geometric series

• They can be summed in a simple closed form
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Example:Example:

Consider a causal sequence: [ ] 1][ <= αμα nnx nConsider a causal sequence: [ ] 1,][ <= αμα nnx

The Fourier transform X(ejω) is obtained as:( )

[ ] njnnjnj eeneX ωωω αμα −
∞

−
∞

∑∑ ==)(
nn =−∞=
∑∑

0

( )ωα j

nje
∞

− == ∑ 1 ( ) ωα j
n e−

= −∑ 10
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Discrete-Time Fourier Transform (DTFT)Discrete-Time Fourier Transform (DTFT)
• As can be seen from definition, DTFT X(ejω) of a 

f fsequence x[n] is a continuous function of ω
• Unlike the continuous-time Fourier transform, 

DTFT is a periodic function in ω with a period 2πDTFT is a periodic function in ω with a period 2π

∑∑
+∞

−−
+∞

+−+ == knjnjnkjkj eenxenxeX πωπωπω 2)2()2( ][][)( ∑∑
−∞=−∞= nn

][][)(

∑
+∞

− == jnj keXenx ofvaluesallfor,)(][ ωω

where e-j2πkn = 1

∑
−∞=n

keXenx ofvaluesallfor ,)(][
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I Di t Ti F i T fInverse Discrete-Time Fourier Transform
π1 ω

π
ω

π

ω deeXnx njj∫
−

= )(
2
1][

• The inverse discrete-time Fourier transform can 
be interpreted as a linear combination of p
infinitesimally small complex exponential signals 
of the form             , weighted by the complex ωω de nj

2
1

constant X(ejω) over the angular frequency range 
from –π to π

π2
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The Discrete-Time 
Fourier Transform (DTFT) Pair

+∞

Analysis equation, denoted by operator F{x[n]}:

∑
+∞

−∞=

−=
n

njj enxeX ωω ][)(

Synthesis equation, denoted by operator F -1{x[n]}:

∫= ωω ω
2

)(
2
1][ deeXnx njj∫ ππ 22



Basic Properties of the DTFTBasic Properties of the DTFT

∑
+∞

−= njj enxeX ωω ][)(

• X(ejω) is a complex function the real variable ω :

∑
−∞=n

][)(

)()()( ωωω j
im

j
re

j ejXeXeX +=

|X( jω)| is the magnitude function

)}(arg{)( where,)()( )( ωωθωω ωθ jjjj eXeeXeX ==

• |X(ejω)| is the magnitude function

• θ(ejω) is called the phase function
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Basic Properties of the DTFTBasic Properties of the DTFT

)()()( ωθωω jjj eeXeX

• In many applications, the Fourier transform 

)()()( jjj eeXeX =

X(ejω) is called the Fourier spectrum
• |X(ejω)| is called the magnitude spectrum and 
• θ(ω) is the phase spectrum
• It is usually assumed that the phase function 

θ(ω) is restricted to the principal value
πωθπ <≤− )(
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Commonly Used DTFT PairsCommonly Used DTFT Pairs

[ ]
DTFTSequence

[ ]
πωπδ

δ

k

n
∞

+↔

↔

∑ )2(21

1

[ ] ωμ j

k

e
n −

−∞=

−
↔

∑

1
1

)(

ω πωωπδ
k

nj ke
e

∞

−∞=

+−↔

−

∑ )2(2
1

0
0

[ ] ωα
αμα j

n

k

e
n −−

↔<
1

1)1(,
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DTFT PropertiesDTFT Properties

• There are a number of important properties of 
the DTFT that are useful in signal processing 
applications

• These are listed here without proof
• Their proofs are straightforward
• The applications of some of the properties are 

illustrated  

© 2009 Olli Simula T-61.3010 Digital Signal Processing; 
Mitra 3rd Edition: Chapter 3

20



© 2009 Olli Simula T-61.3010 Digital Signal Processing; 
Mitra 3rd Edition: Chapter 3

21



© 2009 Olli Simula T-61.3010 Digital Signal Processing; 
Mitra 3rd Edition: Chapter 3

22



Important DTFT TheoremsImportant DTFT Theorems

• There are a number of important theorems of 
the DTFT that are useful in analysis and 
synthesis of discrete-time LTI systems 

• Many algorithms in signal processing 
applications are based on these theorems

• Their proofs are straightforward based on the 
definitions
A th t• Assume that:

[ ] ( ) [ ] ( )ωω j
F

j
F

eHnheGng ↔↔ and
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The Frequency Response of anThe Frequency Response of an 
LTI Discrete-Time System

• Time-Domain:
An LTI discrete-time system is completelyAn LTI discrete time system is completely 
characterized by its impulse response 
sequence {h[n]}q { [ ]}

• Transform-Domain:
Alternative representations of an LTI discreteAlternative representations of an LTI discrete-
time system using the DTFT (and the z-
transform)
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The Frequency Response DefinitionThe Frequency Response - Definition

• An important property of an LTI system is thatAn important property of an LTI system is that 
for certain types of input signals, called 
eigenfunctions, the output signal is the input g p g p
signal multiplied by a complex constant

• We consider one such eigenfunction, the 
complex exponential sequence 

• In general, for CT and DT systems:
– Continuous-time:  esT -> H(s) esT

– Discrete-time: zn -> H(z) zn
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The Frequency ResponseThe Frequency Response
Superposition property:Superposition property:

The response of an LTI system to a linear 
combination of complex exponential signalscombination of complex exponential signals 
can be determined by knowing its response 
to a single complex exponential signalg p p g

The response of the LTI system to a complex 
exponential input is consideredp p

Frequency Response is a transform-domain 
representation of the LTI discrete-time system
© 2009 Olli Simula T-61.3010 Digital Signal Processing; 
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Complex Exponential InputComplex Exponential Input

][*][][][ hkkh∑
∞

][ ][][nh ][*][][][ nxnhknxkh
k

=−= ∑
−∞=

][nx ][ny][nh

nj][ ωI t ∞<<∞−= nenx nj ,][ ω

∑
∞

−= knjekhny )(][][ ω

Input:

Output: ∑
−∞=k

ekhny ][][p

⎟
⎞

⎜
⎛
∑∑
∞

−
∞

− kjkjnj khkh ωωω ][][][ ⎟⎟
⎠

⎜⎜
⎝

== ∑∑
−∞=−∞= k

kj

k

kjnj ekhnxekhe ωωω ][][][
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The Frequency ResponseThe Frequency Response

Define: ∞Define:
∑
∞

−∞=

−=
n

njj enheH ωω ][)(

• H(ejω) is called the frequency response of the 
LTI discrete-time system

• H(ejω) is the DTFT of h[n]
• For a complex exponential input:p p p

njj eeHny ωω )(][ =
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The Response to a Complex ExponentialThe Response to a Complex Exponential

F l ti l i t [ ] f l
• For a fixed frequency ω=ω0:

njj eeHny 00 )(][ ωω=
• For a complex exponential input x[n] of angular 

frequency ω0, the output y[n] is a complex 
exponential sequence of the same angularexponential sequence of the same angular 
frequency ω0 weighted by a complex constant

)( 0ωjeH
• In general, the frequency response H(ejω) is a 

function of the angular frequency and can be 

)(

evaluated at all input frequencies ω
• H(ejω) completely characterizes the behavior of an 

LTI di t ti t i f d i
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The Frequency ResponseThe Frequency Response
• H(ejω) is a complex function of ω with a period 2π

)()()( ωωω j
im

j
re

j ejHeHeH +=
)()( ωθω jj eeH=

)}(argwhere ωje{Hθ(ω)=

)( eeH=

)}(g{( )

• |H(ejω)| is called the magnitude response
• θ(ω) is called the phase response
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The Frequency Response

• In some cases, the magnitude function is 
defined in decibels

• G(ω) is called the gain function

)(log20)( 10
ωω jeH=G dB

• G(ω) is called the gain function 
• The negative of the gain function,
A(ω) = -G(ω) is called the attenuation orA(ω)  G(ω) is called the attenuation or 
loss function
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Frequency-Domain Characterization of 
LTI S tLTI Systems

• Input-output relation in frequency-domain
⎞⎛

)()()( ωωω jjj eXeHeY = )(][ ωω jkj

k

eXekh ⎟
⎠

⎞
⎜
⎝

⎛
= −

∞

−∞=
∑

• Convolution in the time-domain transforms into 
product in the frequency-domain

j

)(
)()( ω

ω
ω

j

j
j

eX
eYeH =

• The frequency response of an LTI discrete-time 
system is the ratio of Y(ejω) and X(ejω)
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Frequency Responses of LTI 
FIR Di t Ti S tFIR Discrete-Time Systems

• Input-output relation of the LTI FIR discrete-time 
system

21,][][][
2

1

NNknxkhny
N

Nk

<−= ∑
=

• Applying the discrete-time Fourier transform (DTFT) 
results in the transform-domain input-output relation

⎞⎛

1

)()()(][)(
2

1

ωωωωω jjjkj
N

Nk

j eXeHeXekheY =
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
= −

=
∑

1 ⎠⎝
where Y(ejω) and X(ejω) are the DTFTs of the output 
and input sequences
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Frequency Responses of LTI 
FIR Di t Ti S tFIR Discrete-Time Systems

• The frequency response of the LTI FIRThe frequency response of the LTI FIR 
discrete-time system is thus

( ) 2N

( ) ∑
=

−=
2

1

][
Nk

kjj ekheH ωω

• The frequency response of the LTI FIR discrete-
time system is a polynomial in e-jωe sys e s a po y o a e
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Frequency Responses of LTI 
IIR Di t Ti S tIIR Discrete-Time Systems

• Input-output relation of the LTI IIR discrete-time 
system

∑∑ −=−
M

k

N

k knxpknyd ][][

• Applying the discrete-time Fourier transform 
(DTFT) results in the transform domain input

== kk 00

(DTFT) results in the transform-domain input-
output relation

MN

)()(
00

ωωωω jkj
M

k
k

jkj
N

k
k eXepeYed −

=

−

=
∑∑ =
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Frequency Responses of LTI 
IIR Di t Ti S tIIR Discrete-Time Systems

• The frequency-domain relation can be written inThe frequency domain relation can be written in  
the form

)()( ωωωω jkj
M

k
jkj

N

k eXepeYed ⎟⎟
⎞

⎜⎜
⎛

=⎟⎟
⎞

⎜⎜
⎛ −− ∑∑ )()(

00 k
k

k
k eXepeYed ⎟⎟

⎠
⎜⎜
⎝

⎟⎟
⎠

⎜⎜
⎝ ==

∑∑

∑ −M kj
k

j epeY )(
ωω

• Solving the ratio
∑
∑

=
−

=== N

k
kj

k

k k
j

j
j

ed

ep

eX
eYeH

0

0

)(
)()(

ωω
ω

• The frequency response of the LTI IIR discrete-
time system is a polynomial in e-jω
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Example: Simple IIR Discrete-Time System
• Consider the first order recursive or infinite impulse 

response (IIR) filter

p p y

response (IIR) filter

1||with,][]1[][ <=−− αα nxnyny

Th f f thi t i bt i d b• The frequency response of this system is obtained by 
the Fourier transform

)()()( ωωωω α jjjj eXeeYeY + −

ω
ω

j
j eYeH ==

1)()(• Solving the ratio:

)()()( α jjjj eXeeYeY =+

ωω α jj eeX
eH −−

==
1)(

)(Solving the ratio:

• The impulse response is: ][][ nnh nμα=
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Response to a Causal Exponential 
SSequence

• In practice the excitation to an LTI discrete-timeIn practice, the excitation to an LTI discrete time 
system is usually a causal sequence applied at 
some finite sample index n = n0p 0

• The output for such an input when observed at 
sample instants beginning at n = n0 will consist of 
a transient part along with a steady-state 
component

• Assume that the input is a causal exponential 
sequence applied at n = 0, i.e., x[n] = e jωnμ[n]
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Response to a Causal Exponential 
SSequence

• For n > 0, the output is obtained using the 
l ticonvolution sum

[ ] njkj
n

knj eekhknekhny ωωω μ
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⎟

⎠

⎞

⎜
⎜

⎝
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=−= −−

∞

∑∑ )( ][][][

as μ[n-k] = 0  for k > n
• Rewriting the last expression of the equation

kk
⎟
⎠

⎜
⎝ == 00

• Rewriting the last expression of the equation
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eekheekhny ωωωω
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Response to a Causal Exponential 
SequenceSequence

[ ] 0,][)( ≥
⎟
⎟
⎞

⎜
⎜
⎛

−= −
∞

∑ neekheeHny njkjnjj ωωωω[ ] 0,][)(
1

≥
⎟
⎠

⎜
⎝ +=
∑ neekheeHny

nk

Steady-state response Transient response

[ ] njj eeHny ωω )(= [ ] njkj
t eekhny ωω

⎟
⎟
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⎜
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−= −
∞

∑ ][[ ]sr eeHny )(= [ ]
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tr eekhny
⎟
⎠

⎜
⎝ +=
∑

1

][

• The effect of the transient response on the 
output is 

[ ] ∑∑∑
∞∞

−−
∞

≤≤= )( ][][][ nkj
tr khkhekhny ω
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Response to a Causal Exponential 
SequenceSequence

[ ] ∑∑∑
∞∞

−−
∞

≤≤= )( ][][][ nkj
tr khkhekhny ω ∑∑∑

=+=+= 011 knknk

• For a causal and stable IIR LTI discrete-time 
system the impulse response is absolutelysystem, the impulse response is absolutely 
summable

• As a result the transient response y [n] is a• As a result the transient response ytr[n] is a 
bounded sequence

• Moreover as [ ] 0→∞→ ∑∞
khn• Moreover, as

the transient response decays to zero as n
gets very large

[ ] 0,
1

→∞→ ∑ +=nk
khn
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Response to a Causal Exponential 
Sequence

I t ti l th t i t• In most practical cases, the transient 
response becomes negligibly small after 
some finite amount of time and the systemsome finite amount of time, and the system 
can be assumed to be in a steady-state

• For a causal FIR LTI discrete-time systemFor a causal FIR LTI discrete time system 
with an impulse response of length N+1, 
h[n]=0 for n > N and, thus, ytr[n]=0 for n > N-1tr

• It should be noted that transients will occur 
whenever an input is applied or changed
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The Concept of FilteringThe Concept of Filtering
• A digital filter is a discrete-time system that passes 

certain frequency components in an input sequencecertain frequency components in an input sequence 
without any distortion and blocks other frequency 
components

• The key to the filtering process is the inverse 
discrete-time Fourier transform which expresses an 

bit li i ht d farbitrary sequence as a linear weighted sum of an 
infinite number of exponential (sinusoidal) sequences

• By appropriately choosing the frequency responseBy appropriately choosing the frequency response 
(or its magnitude) of the LTI digital filter the individual 
sinusoidal components can be attenuated or 
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The Concept of FilteringThe Concept of Filtering
• Consider a real coefficient LTI discrete-time system 

characterized by a magnitude functioncharacterized by a magnitude function  

⎩
⎨
⎧

≤<
≤≤

≅
πωω

ωωω

||0
||0,1

)( cjeH

• An input sequence
⎩ ≤< πωω ||,0 c

πωωω
ωω

<<<<
+=

21

21

0
),cos()cos(][

c

nBnAnx
with 21 c

is applied to the system
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The Concept of FilteringThe Concept of Filtering
• The output sequence is given by

))(cos()(][ 11
1 ωθωω += neHAny j

))(cos()( 22
2 ωθωω ++ neHB j

• Making use of |H(ejω)| the output isMaking use of |H(ej )| the output is 

))(cos()(][ 11
1 ωθωω +≅ neHAny j

• The LTI system is a lowpass filter
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Response to a Sinusoidal Sequencep q
• Consider the sinusoidal input to an LTI discrete-

time system with the frequency response y q y p
H(ejω)=|H(ejω)|e jθ(ω)

[ ] ( )φω += nAnx 0cos[ ] ( )φω += nAnx 0cos

[ ] ( )φωθωω ++= )(cos)( 00
0 neHAny j

• The output signal y[n] has the same sinusoidal 
waveform as the input x[n] with two differences

)( 0ωjeH

)( 0ωθ

a e o as e pu x[n] o d e e ces
– The amplitude is multiplied by the constant value
– The output has a phase lag by amount  
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Phase and Group Delaysp y
• Let us rewrite the output to a sinusoidal input as 

⎟
⎞

⎜
⎛ ⎞⎛ ωθ )([ ] ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+= φ

ω
ωθωω

0

0
0

)(cos)( 0 neHAny j

( )( )φωτωω +−= )(cos)( 00
0

p
j neHA

where                            is called the phase delay
0

0
0

)()(
ω
ωθωτ −=

• The output y[n] is a time-delayed version of the 
input x[n]
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Example: Linear combination of sinusoidal signals

ttttx πππ 6cos
3
24cos2cos

2
11)( +++=Consider the signal:

The same sinusoidal components with phase shifts:
)6cos(

3
2)4cos()2cos(

2
11)( 321 φπφπφπ ++++++= ttttx

32

( ) Φ Φ Φ 0(a) Φ1 = Φ2 = Φ3 = 0

(b) Φ1 = 4, Φ2 = 8, 
and Φ3 = 12 rad
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Example: Linear combination of sinusoidal signals

)6cos(
3
2)4cos()2cos(

2
11)( 321 φπφπφπ ++++++= ttttx

(c) Φ1 = 6, Φ2 = -2.7, 
Φ3 = 0 93 radΦ3  0.93 rad

(d) Φ1 = 1.2, Φ2 = 4.1, 
Φ3 = -7.02 rad

The resulting signals differ significantly for 
different relative phases
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The Group DelayThe Group Delay
• When the input signal contains many sinusoidal 

t ith diff t f i th t tcomponents with different frequencies that are not 
harmonically related, each component will go 
through different phase delays when processed by athrough different phase delays when processed by a 
frequency-selective LTI discrete-time system

• The delay is determined using a different parameter 
called the group delay defined as

ωθωτ d )()( =
ω

ωτ
dg )( −=

• Group delay has a physical interpretation in 
l l ti th f di t ti t
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The Group DelayThe Group Delay
• Group delay function provides a measure of the 

linearity of the phase response
ωθωτ d

g
)()( −=

ω
ωτ

dg )(

• For a moving average filter of length M, the phase 
response is linearresponse is linear

ω
2

1−
−=

Mθ(ω)

and the group delay is constant
1)( −

=
Mωτ
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