Digital Processing of
Continuous-Time Signals
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Introduction

« Analog-to-Digital (A/D) Converter and
Digital-to Analog (D/A) Converter
needed to interface the system with

analog world
« Application examples:
— Speech
— Music
— Images
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Building Blocks

o Pre- | sH | AD | DSP [ D/A
filter

o Anti-aliasing filter (pre-filter)

o Sample-and-hold (S/H) circuit
 A/D converter (ADC)

 Digital signal processor (DSP)
e D/A converter (DAC)
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,| Post-

filter

e Reconstruction (smoothing) filter (post-filter)




« Simplified block diagram with ideal
CT-DT and DT-CT converters:

|deal Interfaces

Xa(t)

|deal
sampler

x[n]

Discrete-
time
processor

yinl

|deal
inter-
polator

SRAU)

 Finite precision A/D and D/A conversion Is
not considered here
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Sampling of CT Signals

* Let g,(t) be a continuous-time signal that is
uniformly sampled at t=nT

gln]=9g,(nT), —-co<n<w

 Tisthe sampling period
 F=1/T Is the sampling frequency
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Spectrum of CT and DT Signals

» Continuous-time Fourier transform of g,(t) IS

G,(jQ) = | g, (e *dt
e Discrete-time Fourier transform of g[n] Is

G(e™”)= Y. glnje

N=—0o0

 What is the difference between the two
different types of Fourier spectra ?
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Sampling Process

p(f) Continuous-time signal g,(t)
% IS multiplied by an impulse
0,(t) 9p(1)=0a,(t) p(t) train
9a(h) . . .
Continuous-time signal g,(t)

0 t
— o(t) Impulse train p(t)

=T
N Y R A A e

t

. T—’(I) a[O]“ JalT]
f\ J\]\ Weighted impulse train

0 t gp(D)=g,(t)p(t)
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Impulse-Train Sampling

The periodic impulse train p(t) is the sampling function
In time-domain:

0,0 =09,00p(1), where pH)= 3 s(t—nT)

N=—o0
Multiplying g.(t) by a unit impulse, samples the value of
the signal at the point at which the impulse is located, i.e.,

x(1)s(t—tg) = x(tg)o(t—1p)
Thus, g,(t) Is an impulse train with the amplitudes of the
iImpulses equal to the samples of g,(t) at intervals spaced
by T, I.e.,

g,(t) = >, 9.(nT)5(t-nT)

N=—oc0
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Impulse-Train Sampling

« Using the multiplication property of the convolution theorem
0,(=0.()pt) < G,(JQ)=G,(jQ)*P(JQ)

* The Fourier transform of a periodic impulse train p(t) is also
a periodic impulse train in the frequency domain, I.e.,

P(jQ) = %25(9— kQ), )
. * PG
=
—j.QT —J_QT JQT 0 JQT ZLT jQT I
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Spectrum of Sampled Signal with €. > 2.0

/iam
-0 0 Q
A |
20 0 0 o) 20, O
1 G142
20 2 -0 0 QN @ 20 O
(‘QT "Qm)
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Spectrum of Sampled Signal with 2. <20

G042

AN

G,09)

20 -2 -0 0,/0 O 20 Q
(QT"Qm)
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Sampling Process

p(t)= > 5(t—nT)

N=—00

oll
ga(t) - %0 Hr(jIQ) " gr(t)

o Sampling process is modeled by multiplying the
continuous-time signal g.(t) with a periodic impulse
train p(t)

* The recovered signal g,(t) is obtained by lowpass
filtering the sampled signal g,(t)
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ldeal Sampling

/ \ G,(i©2)
e Spectrum for g,(t)

-2 0 0 Q

e Corresponding P
spectrum for g,(t) /\ /

20 Q

G,09)

/N

H{9) Q. <Q. <(Q;-Q)

—‘

 |ldeal lowpass filter to

recover H (j<£2) from !
Gp(j 0 Q2. 0 Q, Q
» Spectrum of g,(t) |
-2, 0 Q Q
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Sampling Theorem

o If the sampling frequency at least twice as
high as the highest frequency component of
the bandlimited signal, 1.e., 2. > 20 | then
the original signal can be recovered from its

samples

* If the above condition is not fulfilled, I.e., the
frequency components above (2./2 will be
aliased into the band of interest | < (2.

© 2009 Olli Simula T-61.3010 Digital Signal Processing; 14
Mitra 3rd Edition: Chapter 4



Sampling Theorem

* The highest frequency (2 contained in the
signal is called the Nyquist frequency since
It determines the minimum sampling frequency
Q. =20, also called the Nyquist rate

* The frequency (2/2 is referred to as the
folding frequency

» Critical sampling corresponds to (2, =20
 Undersampling corresponds to (2, <20
» Oversampling corresponds to (2, >> 2.0
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Example: Sampling on a Pure Cosine Signal

e Consider the three continuous-time sinusoidal signals

G, 1)
| (a) Spectrum of
BN cos(6mt)
-6x . 0 6én 0
Gylj2)
(b) Spectrum of
] ) cos(14nt)
-|4n G}:ﬁj l4n
) lx | (c) Spectrum of
f | . cos(26mnt)
26 o T
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Example: Sampling on a Pure Cosine Signal

 The spectra of the sampled versions of the original
cosine signals with the sampling frequency 2,=20r

G, ()

R - (d) Spectrum of the
; I {”]‘ { sampled version of
B TR R T e : cos(6mnt)
G, ,(J2)
| ' Lon o4 1) : (e) Spectrum of the
l [ oo ' | sampled version of
e cos(14nt)
s
Gy (/)
U (f) Spectrum of the
{ - ]m[l ’ sampled version of
— ?;c: > a COS(26mt)
alias
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Recovery of the Analog Signal

* |deal lowpass filter: H (jQ)=x

T, |QQ,
0, | Q> Q)

w ~
() = [H,(jQ)eda=—— [efdn
27T - 27T I

* Impulse train g(t) :

_ sm(QCt), o<t <
Qt/2

N=—00

g,0)=g,

(nT)o(t—nT)

e Output of the ideal lowpass filter is given by the
convolution
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Recovery of the Analog Signal

6.(t) = glnlh, (t-nT)

N=—o0

e Substituting h.(t) and assuming that 2= Q./2=#T

= sinf[z(t—nT)/T]

ga(t)=n;o o= T

* g,(t) Is obtained by ;
shifting in time and £ |
scaling h.(t)
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lllustration of the Sampling Process

GyAD

‘  Three continuos-time
h '{, (' : signals with band-
o limited spectra
11 D . * Each of these signals
o T IS sampled at a
sampling frequency of
1.
o » The periodic frequency

() (f h!ﬂ N N spectra of the sampled
] s signals are identical

LR
(dy

Figure 5.10 Further illustration of the effect of sampling,.
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Analog Filter Design

e Magnitude response specifications for approximation
of the ideal response

o Passband —-i Stopband

E.]'--
iy - 182
0 ﬂp 1,
—'-I l..._.
Transition
band
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Analog Filter Specifications
 Passband: 1—5p£‘Ha(jQ)‘£l+5p, |1QIKQ,

Magnitude approximates unity within +o,
« Stopband: ‘Ha(jQ)‘£5S, Q Qo

Magnitude approximates zero within +¢,

* Finite transition band between passband and
stopband edge frequencies (2 and (2,

 The deviations, ¢, and o, are called the ripples
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Analog Filter Specifications

 The limits of the tolerances, ¢, and J;, I.e., the ripples
can be defined in decibels

 The peak passband ripple «, and the minimum
stopband attenuation «,, are defined as:

o, =-20log,,(1-5,) dB
a, =-20log,,(0,) dB

* The specifications can be given also as the loss or
attenuation function a4j<2) in dB which is defined as

the negative of the gain in dB, I.e.,
v (jQ) =-20log,,[H, (j©)| dB
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Normalized Magnitude Specifications

 The maximum value of the magnitude is assumed to
be unity

|Hat0)|

Transition
band

Figure 5.12 Normalized magnitude specifications for an analog lowpass filter.
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Classical Filter Designs

The classical filter designs
e Butterworth,
 Chebyshev, and
o Elliptic
satisfy the magnitude constraints of analog filters

These approximation methods can be expressed
using the closed form formulas

o Extensive tables are available for analog filter
design

 The closed form formulas can be easily solved
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Butterworth Approximation

The magnitude response is required to be maximally
flat in the passband

For the lowpass filter, the first 2N-1 derivatives of
IH(jQ2)|? are specified to equal to zero at Q=0

The squared-magnitude response of an analog
lowpass Butterworth filter is

1
1+(Q/ Q)"

H.(jQ) =
The gain is: C7'(Q):1OIoglo\Ha(jQ)\2 dB
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Butterworth Approximation
Note that  |H,(0)|=1 and |H,(j)=+%

At dc, I.e. at Q=0, the gain in dB is equal to zero and
at Q=Q, the gain is

G(Q,)=10log,,(¥2) =-3.0103=-3dB

Therefore, Q. Is called the 3-dB cutoff frequency

Since the derivative of the squared-magnitude
response Is always negative for positive values of €,
the magnitude response is monotonically decreasing
with increasing 2
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Butterworth Approximation

 Magnitude response of the normalized Butterworth
lowpass filter with Q=1

© 2009 Olli Simula
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Butterworth Approximation

* The system function of the Butterworth filter is

1
1+(s/ jQ, )"

Ha(S)Ha(_S) —

and the poles of H_(s)H,(-s) are
s, = (1" (j,)

 These 2N poles are uniformly distributed on circle of
radius Q. in the s-plane and are symmetrically located
with respect to both the real and imaginary axes
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Butterworth Approximation

2 40

ay
T ,/
/N : w

y

 The poles from left half s-plane are selected to the
stable transfer function, an all-pole transfer function

H(s) =
B, (s)
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Chebyshev Approximation

 More rapid rolloff rate near the cutoff frequency than
that of the Butterworth design can be achieved at the
expense of a loss of monotonicity in the passband
and/or the stopband

 The Chebyshev designs maintain monotonicity In
one band but are equiripple in the other band

Chebyshev Type | (normal Chebyshev):
« All-pole transfer function, i.e., all zeros at infinity
Chebyshev Type Il (inverse Chebyshev):

e Rational transfer function having zeros at finite
frequencies
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Chebyshev | Approximation

 The squared magnitude response for an analog
Chebyshev | design is of the form

. 1
!Ha(JQ)!ZZ > 2
1+& T (Q/Q))

where T (Q) is the N order Chebyshev polynomial
‘cos(Ncos™Q), |Q<1
cosh(Ncosh™Q), |QJ>1
* The recurrence relation for Chebyshev polynomials
Tr (Q) — ZQTr—l (Q) _Tr—2 (Q)
with T,(€2)=1 and T,(QQ)=Q
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Chebyshev | Approximation

1
1+ T (Q/1Q))

H, Q) =

In the passband, Q < Q,, Ty (Q2)=cos(Ncos'Q) varies
between -1 and 1 and its square between O and 1

Thus, [H,(Q)I? has equal ripple behaviour in the
passband between 1 and (1-9,)?

The deviation is determined by the ripple factor ¢
1 ) 1

1-6,)° = = &= -1
d=o) =10 (1-6,)

The transfer function is an all-pole function in the s-plane
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Chebyshev | Approximation

 The squared magnitude
response of a lowpass
Chebyshev | filter for
different values of N

e The behavior is deter-
mined by the cutoff

frequency Q,, the pass- T e T
band ripple factor ¢, and - Normalized froquency
the order N

* For the stopband specifi- cosh™(1/ 6, )
cations &, and Q the order N = :

~ -1
N can be determined from: cosh (Qs /Qp)
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Chebyshev | Approximation

 The poles of the \ T »
Chebyshev I filter lie on v \7 ~plane

an ellipse in the s-plane Ny Sy

* The equiripple behavior A\l
In the passband can be
explained by considering
the locations of the poles
(and comparing them to
those of the Butterworth
filter)
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Chebyshev |l Approximation

 The squared magnitude response is of the form
1

T /Q,)
I TS (Q,/Q) )

H, Q) =

* The transfer function
has equal ripple
behavior in the
stopband due to zeros
at finite frequencies,

RN .e., it Is not an all-pole

003 ey transfer function
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Elliptic Approximation

 The squared magnitude response is of the form
2 1
H.(JQ) = 5=
1+ "Ry (Q1Q))

where R(Q) is a rational function with R, (1/Q) =1/R (€2)

* The transfer function has
equal ripple behavior both
In the passband and Iin
the stopband

 Elliptic approximation has
AN the narrowest transition
% 05 T > 25 3 band

Normalized frequency
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Anti-Aliasing Filter Design

 Ideally, the anti-aliasing filter H_(s) should have a lowpass
frequency response H_(J€2) given by

_ 1, |QQ,/2
- /IQ\:
t1a\l)=<)
0, |QPQ, /2

| Spectrum of aliased e |n practice, it is
A9 componentof inpu necessary to filter
| " out those
frequencies that
will be aliased to
Q the band of
-Q,-Q | Interest
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Reconstruction Filter Design

e Reconstruction or smoothing filter is used to eliminate all
the replicas of the spectrum outside the baseband

 If the cutoff frequency Q. of the reconstruction filter is

chosen as 3;/2, where Q- is the sampling frequency, the

corresponding frequency response is given by

H (i0) - T, |QKQ. /2
A0, Q> Q- /2

* The reconstruction filter is not causal
 The reconstructed analog signal Is
- sinf[z(t—nT)/T]
t) = n
Yo ()= yIn] )T

N=—0c0
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Zero-Order Hold

 The analog signal is approximated by the staircase-like
waveform

Yp() yz‘([t)
1] -
. . . -.-' ot
| 0T llllll‘ 0 T _|_|_‘_,_'_
(a) (b)
* The zero-order hold circuit has the impulse response h,(t)
()
1
y,)— k) % ® L g
(a) (b)
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Zero-Order Hold

* Fourier transform of the output of the zero-order hold is
Y, (1) = H,(JQ)Y,(JQ)

T

| —jot RS
where HZ(jQ):jTe“Qtdt :—e_ =l _e
0 Q| J€2
_e—j% Sin(QT /2)
Q2

 The magnitude response of the zero-order hold has a
lowpass characteristic with zeros at +Q)., +2Q,..., where
Q=1/T

 The zero-order hold somewhat attenuates the unwanted
replicas of the periodic digital signal at multiples of Q-
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Zero-Order Hold

e The zero-order hold
circuit also distorts the

X magnitude in the band
o of interest (close to Q)
\ /\ /\ [ a) Zero-order hold
0 , | - b) Output of the ideal
o e T D/A converter

c) Output of the
practical D/A
L LN e converter

0 Q 1 Qr Q 3Q
Qr 2, ©
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Zero-Order Hold

e The distortion of the zero-order hold can be
compensated, e.g., digitally prior to D/A converter

e FIR filter:

l.
1 9 , 1 _
HFIR(Z) =——+—=1 1__2 i
16 8 16
o |IR filter:
9 N N
H (Z): ...... ....... R S
IR _ | ; N
8+z7 S N
—4 _ . _ _ .
0 0.2n 0.4r 0.6x 0.8n n
Normalized frequency
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