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IntroductionIntroduction

• Analog-to-Digital (A/D) Converter and 
Digital-to Analog (D/A) Converter g g ( )
needed to interface the system with 
analog worldanalog world

• Application examples:
– Speech
– Music
– Images
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Building BlocksBuilding Blocks
P P tD/APre-
filter

Post-
filter

S/H A/D DSP

• Anti-aliasing filter (pre-filter)
• Sample-and-hold (S/H) circuitSample and hold (S/H) circuit
• A/D converter (ADC)
• Digital signal processor (DSP)
• D/A converter (DAC)D/A converter (DAC)
• Reconstruction (smoothing) filter (post-filter)
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Ideal InterfacesIdeal Interfaces

• Simplified block diagram with ideal 
CT-DT and DT-CT converters:CT DT and DT CT converters:

Di t Id lDiscrete-
time

processor

Ideal 
inter-

polator

Ideal
sampler

x [n]
xa(t) ya(t)

y[n]

• Finite precision A/D and D/A conversion isFinite precision A/D and D/A conversion is 
not considered here
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Sampling of CT SignalsSampling of CT Signals
L t ( ) b ti ti i l th t i• Let ga(t) be a continuous-time signal that is 
uniformly sampled at t=nT 

∞<<∞−= nnTgng a ,)(][

• T is the sampling period
• F =1/T is the sampling frequency• FT=1/T is the sampling frequency
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Spectrum of CT and DT SignalsSpectrum of CT and DT Signals
C ti ti F i t f f ( ) i• Continuous-time Fourier transform of ga(t) is

∫
∞

Ω−=Ω dtetgjG tj)()( ∫
∞−

=Ω dtetgjG aa )()(

Di t ti F i t f f [ ] i

∑
∞

− njjG ωω ][)(

• Discrete-time Fourier transform of g[n] is

Wh t i th diff b t th t

∑
−∞=

−=
n

njj engeG ωω ][)(

• What is the difference between the two 
different types of Fourier spectra ?
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Sampling ProcessSampling Process
C ti ti i l ( )

x

p(t)

ga(t) gp(t)=ga(t) p(t)

Continuous-time signal ga(t)
is multiplied by an impulse 
train

ga(t)

train

Continuous-time signal ga(t)
0 t

p(t)
1

T Impulse train p(t)

∑∞ T )()( δ
0 t

T
ga[0] ga[T]

Weighted impulse train

∑ −∞=
−=

n
nTttp )()( δ

0 t

Weighted impulse train 

gp(t)=ga(t)p(t)
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Impulse-Train SamplingImpulse Train Sampling
• The periodic impulse train p(t) is the sampling function
• In time-domain:

∑
∞

−= nTttp )()( δwhere,)()()( tptgtg ap =

• Multiplying ga(t) by a unit impulse, samples the value of 
th i l t th i t t hi h th i l i l t d i

∑
−∞=n

p )()(,)()()( pgg ap

the signal at the point at which the impulse is located, i.e.,
)()()()( 000 tttxtttx −=− δδ

• Thus, gp(t) is an impulse train with the amplitudes of the 
impulses equal to the samples of ga(t) at intervals spaced 
by T, i.e.,

∑
∞

−= ap nTtnTgtg )()()( δ

© 2009 Olli Simula T-61.3010 Digital Signal Processing; 
Mitra 3rd Edition: Chapter 4

8

∑
−∞=n

p



Impulse-Train SamplingImpulse Train Sampling
• Using the multiplication property of the convolution theoremg p p p y

)()()()()()( Ω∗Ω=Ω⇔= jPjGjGtptgtg apap

• The Fourier transform of a periodic impulse train p(t) is also 
a periodic impulse train in the frequency domain, i.e.,

∑
∞

−∞=

Ω−Ω=Ω
k

Tk
T

jP )(1)( δ

P(jΩ)
1
T

0 Ω

T

ΩT 2ΩT 3ΩT−ΩT−2ΩT−3ΩT
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Spectrum of Sampled Signal with Ω > 2ΩSpectrum of Sampled Signal with ΩT > 2Ωm

G ( Ω)Ga(jΩ)

0 ΩΩm−Ωm

P(jΩ)1

0 Ω−ΩT 2ΩT−2ΩT ΩT

Gp(jΩ)1
T

0 ΩΩT−ΩT 2ΩT−2ΩT Ωm−Ωm
(ΩT -Ωm)
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Spectrum of Sampled Signal with Ω < 2ΩSpectrum of Sampled Signal with ΩT < 2Ωm

G ( Ω)Ga(jΩ)

0 ΩΩm−Ωm

P(jΩ)1

0 Ω

(j )1

−ΩT 2ΩT−2ΩT ΩT

Gp(jΩ)1
T

(ΩT-Ωm)
0 ΩΩT−ΩT 2ΩT−2ΩT Ωm−Ωm
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Sampling ProcessSampling Process
∑
+∞

( )
gp(t)

H (jΩ)

∑
−∞=

−=
n

nTttp )()( δ

( )xga(t) Hr(jΩ) gr(t)

• Sampling process is modeled by multiplying the 
continuous-time signal g (t) with a periodic impulsecontinuous time signal ga(t) with a periodic impulse 
train p(t) 

Th d i l (t) i bt i d b l• The recovered signal gr(t) is obtained by lowpass 
filtering the sampled signal gp(t)
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Ideal Sampling
• Spectrum for ga(t) 0 Ω

Ga(jΩ)

ΩΩ

Ideal Sampling

• Corresponding 

0 ΩΩm−Ωm

Gp(jΩ)1
Tp g

spectrum for gp(t)
0 Ω

T

ΩT−Ωt Ωm−Ωm

• Ideal lowpass filter to 
recover Hr(jΩ) from 

Hr(jΩ) )( mTcm Ω−Ω<Ω<Ω
T

r(j )
Gp(jΩ) 0 ΩΩc−Ωc

G (jΩ)1

• Spectrum of gr(t)
0 Ω

Gr(jΩ)

Ωm−Ωm
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Sampling TheoremSampling Theorem
• If the sampling frequency at least twice asIf the sampling frequency at least twice as 

high as the highest frequency component of 
the bandlimited signal i e ΩT > 2Ω thenthe bandlimited signal, i.e., ΩT > 2Ωm ,  then 
the original signal can be recovered from its 
samplessamples 

• If the above condition is not fulfilled, i.e., the , ,
frequency components above ΩT/2 will be 
aliased into the band of interest |Ω| < Ωaliased into the band of interest |Ω| < Ωm
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Sampling TheoremSampling Theorem
• The highest frequency Ω contained in theThe highest frequency Ωm contained in the 

signal is called the Nyquist frequency since 
it determines the minimum sampling frequencyit determines the minimum sampling frequency
ΩT = 2Ωm , also called the Nyquist rate

• The frequency ΩT/2 is referred to as the 
folding frequencyg q y

• Critical sampling corresponds to ΩT = 2Ωm

• Undersampling corresponds to ΩT < 2Ωm

• Oversampling corresponds to ΩT >> 2Ω
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Example: Sampling on a Pure Cosine SignalExample: Sampling on a Pure Cosine Signal

• Consider the three continuous-time sinusoidal signals

(a) Spectrum of

g

(a) Spectrum of 
cos(6πt)

(b) Spectrum of 
cos(14πt)cos(14πt)

( ) S t f(c) Spectrum of 
cos(26πt)
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Example: Sampling on a Pure Cosine SignalExample: Sampling on a Pure Cosine Signal
• The spectra of the sampled versions of the original 

cosine signals with the sampling frequency Ω =20π
(d) Spectrum of the 

sampled version of

cosine signals with the sampling frequency ΩT=20π

sampled version of 
cos(6πt)

(e) Spectrum of the 
sampled version of 
cos(14πt)cos(14πt)

(f) Spectrum of the ( ) p
sampled version of 
cos(26πt)
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Recovery of the Analog SignalRecovery of the Analog Signal
• Ideal lowpass filter: ⎨

⎧ Ω≤Ω
=Ω cT

jH
||,

)(Ideal lowpass filter: 

ΩΩΩ ∫∫
Ω

Ω
∞

Ω dTdjHh tjtj
c

)(1)(

⎩
⎨ Ω>Ω

=Ω
c

r jH
||,0

)(

Ω

Ω=ΩΩ= ∫∫
Ω−

Ω

∞−

Ω

t

dedejHth tjtj
rr

c

)i (

2
)(

2
)(

ππ

∞<<∞−
Ω

Ω
= t

t
t

c

c ,
2/

)sin(

• Impulse train gp(t) : ∑
∞

−∞=

−=
n

ap nTtnTgtg )()()( δ

• Output of the ideal lowpass filter is given by the 
convolution
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Recovery of the Analog SignalRecovery of the Analog Signal

∑
∞

= nTthngtg )(][)(ˆ ∑
−∞=

−=
n

ra nTthngtg )(][)(

• Substituting h (t) and assuming that Ω = Ω /2=π/T

∑
∞ −

=
TnTtngtg ]/)(sin[][)(ˆ π

• Substituting hr(t) and assuming that Ωc= ΩT/2=π/T

∑
−∞= −

=
n

a TnTt
ngtg

/)(
][)(

π

• ga(t) is obtained by 
shifting in time and g
scaling hr(t) 
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Illustration of the Sampling ProcessIllustration of the Sampling Process
• Three continuos-time 

signals with band-
limited spectra

• Each of these signals 
is sampled at a p
sampling frequency of 
ΩT 

• The periodic frequency 
spectra of the sampled 
signals are identical 
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Analog Filter DesignAnalog Filter Design
• Magnitude response specifications for approximation g p p pp

of the ideal response
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Analog Filter SpecificationsAnalog Filter Specifications
• Passband: ppap jH Ω≤Ω+≤Ω≤− ||,1)(1 δδPassband: ppap j ||,)( δδ

Magnitude approximates unity within +δp

• Stopband: ∞<Ω≤Ω≤Ω ||,)( psa jH δ

Magnitude approximates zero within +δs

• Finite transition band between passband and 
stopband edge frequencies Ωp and Ωs

• The deviations, δp and δs , are called the ripples
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Analog Filter SpecificationsAnalog Filter Specifications
• The limits of the tolerances, δp and δs, i.e., the ripples p

can be defined in decibels
• The peak passband ripple αp and the minimum p

stopband attenuation αs, are defined as:

dB)1(log20 10 δα −−=

dB  )(log20

dB  )1(log20

10

10

ss

pp

δα

δα

−=

• The specifications can be given also as  the loss or 
attenuation function a(jΩ) in dB which is defined as 
the negative of the gain in dB, i.e.,

dB)(log20)( 10 Ω−=Ω jHja
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Normalized Magnitude SpecificationsNormalized Magnitude Specifications
• The maximum value of the magnitude is assumed to g

be unity
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Classical Filter DesignsClassical Filter Designs
• The classical filter designsg

• Butterworth,
• Chebyshev andChebyshev, and 
• Elliptic
ti f th it d t i t f l filtsatisfy the magnitude constraints of analog filters 

• These approximation methods can be expressed 
i th l d f f lusing the closed form formulas

• Extensive tables are available for analog filter 
design

• The closed form formulas can be easily solved
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Butterworth ApproximationButterworth Approximation
• The magnitude response is required to be maximally g p q y

flat in the passband
• For the lowpass filter, the first 2N-1 derivatives of p ,

|H(jΩ)|2 are specified to equal to zero at Ω=0
• The squared-magnitude response of an analogThe squared magnitude response of an analog 

lowpass Butterworth filter is

1
N

c
a jH 2

2

)/(1
1)(
ΩΩ+

=Ω

• The gain is: dB  )(log10)( 2
10 Ω=Ω jHaG
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Butterworth ApproximationButterworth Approximation
• Note that

2
1)(and  ;1)0( =Ω= caa jHH
2

)(;)( caa j

• At dc, i.e. at Ω=0, the gain in dB is equal to zero and 

dB33 0103½)(log10)( ≅==ΩG

, , g q
at Ω=Ωc, the gain is 

dB-3-3.0103½)(log10)( 10 ≅==ΩcG

• Therefore, Ωc is called the 3-dB cutoff frequency
• Since  the derivative of the squared-magnitude 

response is always negative for positive values of Ω, 
the magnitude response is monotonically decreasing 
with increasing Ω
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Butterworth ApproximationButterworth Approximation
• Magnitude response of the normalized Butterworth g p

lowpass filter with Ωc=1
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Butterworth ApproximationButterworth Approximation
• The system function of the Butterworth filter is y

Naa j
sHsH 2)/(1

1)()(
Ω+

=− N
cjs )/(1 Ω+

and the poles of  Ha(s)Ha(-s) arep a( ) a( )

)()1( 2/1
c

N
k js Ω−=

• These 2N poles are uniformly distributed on circle of 
radius Ωc in the s-plane and are symmetrically located 
with respect to both the real and imaginary axes
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Butterworth ApproximationButterworth Approximation

• The poles from left half s plane are selected to the• The poles from left half s-plane are selected to the 
stable transfer function, an all-pole transfer function

)(
1)(

sB
sH

n

=

© 2009 Olli Simula T-61.3010 Digital Signal Processing; 
Mitra 3rd Edition: Chapter 4

30

)(n



Chebyshev ApproximationChebyshev Approximation
• More rapid rolloff rate near the cutoff frequency than 

that of the Butterworth design can be achieved at the 
expense of a loss of monotonicity in the passband 

d/ h b dand/or the stopband
• The Chebyshev designs maintain monotonicity in 

one band but are equiripple in the other band
Chebyshev Type I (normal Chebyshev):
• All-pole transfer function, i.e., all zeros at infinity
Chebyshev Type II (inverse Chebyshev):Chebyshev Type II (inverse Chebyshev):
• Rational transfer function having zeros at finite 

frequencies
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Chebyshev I ApproximationChebyshev I Approximation
• The squared magnitude response for an analog 

Ch b h I d i i f th fChebyshev I design is of the form
1)( 22

2
a jH =Ω

)/(1
)( 22

pN
a T

j
ΩΩ+ ε

where TN(Ω) is the Nth order Chebyshev polynomialN( ) y p y

⎩
⎨
⎧

>ΩΩ
≤ΩΩ

=Ω
−

−

1||)hh(
1||),coscos(

)( 1

1

N
N

TN
⎩ >ΩΩ 1||),coshcosh( 1N

• The recurrence relation for Chebyshev polynomials
)()(2)( 21 Ω−ΩΩ=Ω −− rrr TTT

with T0(Ω)=1 and T1(Ω)= Ω
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Chebyshev I ApproximationChebyshev I Approximation
1)( 2jH =Ω

)/(1
)( 22

pN
a T

jH
ΩΩ+

=Ω
ε

In the passband Ω < Ω T (Ω) (N 1Ω) varies• In the passband, Ω < Ωp, TN(Ω)=cos(Ncos-1Ω) varies 
between -1 and 1 and its square between 0 and 1

• Thus |H (jΩ)|2 has equal ripple behaviour in the• Thus, |Ha(jΩ)|2 has equal ripple behaviour in the 
passband between 1 and (1-δ1)2

• The deviation is determined by the ripple factor ε• The deviation is determined by the ripple factor ε

1
)1(

1
1

1)1( 2
2

2
2

1 −=⇒
+

=−
δ

εδ
)1(1 2

1
2 −+ δε

• The transfer function is an all-pole function in the s-plane
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Chebyshev I ApproximationChebyshev I Approximation
• The squared magnitudeThe squared magnitude 

response of a lowpass 
Chebyshev I filter for 
different values of N

• The behavior is deter-
mined by the cutoff 
frequency Ωp, the pass-
band ripple factor andband ripple factor ε, and 
the order N

• For the stopband specifi )/1(h 1 δ• For the stopband specifi-
cations δ2 and Ωs the order 
N can be determined from: )/(cosh

)/1(cosh
1

2
1

ps

N
ΩΩ

≈ −

− εδ
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Chebyshev I ApproximationChebyshev I Approximation
• The poles of theThe poles of the 

Chebyshev I filter lie on 
an ellipse in the s-planep p

• The equiripple behavior 
in the passband can bein the passband can be 
explained by considering 
the locations of the poles p
(and comparing them to 
those of the Butterworth 
filter)
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Chebyshev II ApproximationChebyshev II Approximation
• The squared magnitude response is of the form

22
2

2

)/(
1

1)(

⎥
⎤

⎢
⎡ ΩΩ

+

=Ω
psN

a
T

jH

2
2

)/(
1

⎥
⎥
⎦⎢

⎢
⎣ ΩΩ

+
sN

psN

T
ε

• The transfer function 
has equal ripple 
behavior in thebehavior in the 
stopband due to zeros 
at finite frequencies,at finite frequencies, 
i.e., it is not an all-pole 
transfer function

© 2009 Olli Simula T-61.3010 Digital Signal Processing; 
Mitra 3rd Edition: Chapter 4

36



Elliptic ApproximationElliptic Approximation
• The squared magnitude response is of the form

12

)/(1
1)( 22

2

pN
a R

jH
ΩΩ+

=Ω
ε

where RN(Ω) is a rational function with )(/1)/1( Ω=Ω NN RR

• The transfer function has 
equal ripple behavior both 
in the passband and inin the passband and in 
the stopband 

• Elliptic approximation has• Elliptic approximation has 
the narrowest transition 
band
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Anti-Aliasing Filter DesignAnti Aliasing Filter Design
• Ideally, the anti-aliasing filter Ha(s) should have a lowpass 

freq enc response H (jΩ) gi en bfrequency response Ha(jΩ) given by

⎨
⎧ Ω<Ω

=Ω
2/||,1

)( TjH
⎩
⎨ Ω≥Ω

=Ω
2/||,0

)(
T

a jH

• In practice, it is 
necessary to filter 

t thout those 
frequencies that 
will be aliased towill be aliased to 
the band of 
interest 
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Reconstruction Filter DesignReconstruction Filter Design
• Reconstruction or smoothing filter is used to eliminate all 

the replicas of the spectr m o tside the basebandthe replicas of the spectrum outside the baseband
• If the cutoff frequency Ωc of the reconstruction filter is 

chosen as Ω /2 where Ω is the sampling frequency thechosen as ΩT/2, where ΩT is the sampling frequency, the 
corresponding frequency response is given by

⎧ Ω≤Ω 2/||T

⎩
⎨
⎧

Ω>Ω
Ω≤Ω

=Ω
2/||,0
2/||,

)(
T

T
r

T
jH

• The reconstruction filter is not causal!
• The reconstructed analog signal isg g

∑
∞

−
−

=a TnTt
TnTtnyty

/)(
]/)(sin[][)(

π
π

© 2009 Olli Simula T-61.3010 Digital Signal Processing; 
Mitra 3rd Edition: Chapter 4

39

−∞= −n TnTt /)(π



Zero-Order HoldZero Order Hold
• The analog signal is approximated by the staircase-like 

a eformwaveform

• The zero-order hold circuit has the impulse response hz(t)
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Zero-Order HoldZero Order Hold
• Fourier transform of the output of the zero-order hold is

)()()( ΩΩΩ jYjHjY

where

)()()( ΩΩ=Ω jYjHjY pzz

−
=−==Ω

Ω−Ω−
Ω−∫

1)( eedtejH
tjTtjT tjwhere

⎤⎡ Ω

Ω
=

Ω
==Ω

Ω

∫
)2/sin(

)(
0

0

T

jj
dtejH

tj

z

⎥⎦
⎤

⎢⎣
⎡

Ω
Ω

=
−

2/
)2/sin(2 Te

j

Th it d f th d h ld h• The magnitude response of the zero-order hold has a 
lowpass characteristic with zeros at +ΩT, +2ΩT,..., where 
Ω =1/TΩT 1/T

• The zero-order hold somewhat attenuates the unwanted 
replicas of the periodic digital signal at multiples of ΩT
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Zero-Order HoldZero Order Hold

• The zero-order hold• The zero-order hold 
circuit also distorts the 
magnitude in the bandmagnitude in the band 
of interest (close to Ωm)

a) Zero order holda) Zero-order hold

b) Output of the ideal 
D/A converter

c) Output of the ) p
practical D/A 
converter
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Zero-Order HoldZero Order Hold
• The distortion of the zero-order hold can be 

compensated, e.g., digitally prior to D/A converter

• FIR filter:• FIR filter:

21

16
1

8
9

16
1)( −− −+−= zzzH FIR

• IIR filter:

16816
)(FIR

18
9)( −+

=
z

zH IIR 8 + z

© 2009 Olli Simula T-61.3010 Digital Signal Processing; 
Mitra 3rd Edition: Chapter 4

43


