Finite-Length Discrete Transform

Introduction

- In this chapter, finite-length transforms are discussed
- In practice, it is often convenient to map a finitelength sequence from time domain into a finitelength sequence of the same length in the frequency domain
- The samples of the forward transform are unique and represented as a linear combination of the samples of the time domain sequence
- The samples of the inverse transform are obtained similarly from the samples of the transform domain

Introduction

- In some applications, a very long-length time domain sequence is broken up into a set of shortlength sequences and a finite-length transform is applied to each short-length sequence
- The transformed sequences are processed in the transform domain
- Time domain equivalents are produced using the inverse transform
- The processed short-length sequences are grouped together in the time domain to form the final long-length sequence

Orthogonal Transforms

- Let $x[n]$ denote a length- N time domain sequence with $X[k]$ denoting the coefficients of its N-point orthogonal transform
- A general form of the orthogonal transform pair is of the form

$$
\begin{array}{cc}
X[k]=\sum_{n=0}^{N-1} x[n] \psi^{*}[k, n], & 0 \leq k \leq N-1 \\
x[n]=\frac{1}{N} \sum_{k=0}^{N-1} X[k] \psi[k, n], & 0 \leq n \leq N-1
\end{array}
$$

Orthogonal Transforms

- In the transform pair, the basis sequences $\psi[k, n]$ are also length- N sequences in both domains
- In the class of finite-dimensional transforms, the basis sequences satisfy the condition

$$
\frac{1}{N} \sum_{n=0}^{N-1} \psi[k, n] \psi^{*}[l, n]= \begin{cases}1, & l=k \\ 0, & l \neq k\end{cases}
$$

- Basis sequences $\psi[k, n]$ satisfying the above condition are said to be orthogonal to each other

Orthogonal Transforms

- An important consequence of the orthogonality of the basis sequence is the energy preservation property of the transform
- The energy $\left.\sum_{n=0}^{N-1} x[n]\right|^{2}$ of the time domain sequence $x[n]$ can be computed in the transform domain
- The energy can be written as

$$
\sum_{n=0}^{N-1}|x[n]|^{2}=\sum_{n=0}^{N-1} x[n] x^{*}[n]
$$

Orthogonal Transforms

- Let us express $x[n]$ in terms of its transform domain representation

$$
\begin{aligned}
& \sum_{n=0}^{N-1} x[n] x^{*}[n]=\sum_{n=0}^{N-1}\left(\frac{1}{N} \sum_{k=0}^{N-1} X[k] \psi[k, n]\right) x^{*}[n] \\
\longleftrightarrow & =\frac{1}{N} \sum_{k=0}^{N-1} X[k]\left(\sum_{n=0}^{N-1} x^{*}[n] \psi[k, n]\right)=\frac{1}{N} \sum_{k=0}^{N-1} X[k] X^{*}[k]
\end{aligned}
$$

which is known as the Parseval's relation

The Discrete Fourier Transform

- In the following, the discrete Fourier transform, DFT, is defined
- The inverse transformation, IDFT is developed
- Some important properties of the DFT are discussed
- DFT has several important applications:
- Numerical calculation of the Fourier transform in an efficient way
- Implementation of linear convolution using finite-length sequences

Definition of the DFT

- Discrete Fourier transform (DFT) of the length- N sequence $x[n]$ is defined by

$$
X[k]=\sum_{n=0}^{N-1} x[n] e^{-j 2 \pi k n / N}, \quad 0 \leq k \leq N-1
$$

- The basis sequences are: $\psi[k, n]=e^{-j 2 \pi k n / N}$ which are complex exponential sequences
- As a result, DFT coefficients $X[k]$ are complex numbers, even if $x[n]$ are real
- It can be easily shown that the basis sequences $e^{j 2 \pi k n / N}$ are orthogonal

Discrete Fourier Transform (DFT)

- Common notation with DFT: $W_{N}=e^{-j 2 \pi N}$
- DFT can now be written as follows:

$$
X[k]=\sum_{n=0}^{N-1} x[n] W_{N}{ }^{k n}, \quad k=0,1, \ldots, N-1
$$

- Inverse Discrete Fourier Transform (IDFT):

$$
x[n]=\frac{1}{N} \sum_{k=0}^{N-1} X[k] W_{N}^{-k n}, \quad n=0,1, \ldots, N-1
$$

- $X[k]$ and $x[n]$ are both sequences of finite-length N

Discrete Fourier Transform Pair

- The analysis equation:

$$
X[k]=\sum_{n=0}^{N-1} x[n] W_{N}{ }^{k n}, \quad k=0,1, \ldots, N-1
$$

- The synthesis equation:

$$
x[n]=\frac{1}{N} \sum_{n=0}^{N-1} X[k] W_{N}^{-k n}, \quad n=0,1, \ldots, N-1
$$

DFT

- DFT pair is denoted as: $x[n] \longleftrightarrow X[k]$

Relation Between the Discrete-Time Fourier Transform and the DFT

- The DTFT $X\left(e^{j \omega}\right)$ of the length $-N$ sequence $x[n]$ defined for $0 \leq n \leq N-1$ is given by:

$$
X\left(e^{j \omega}\right)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n}=\sum_{n=0}^{N-1} x[n] e^{-j \omega n}
$$

- By uniformly sampling $X\left(e^{j \omega}\right)$ at N equally spaced frequencies $\omega_{k}=2 \pi k / N, 0 \leq k \leq N-1$, on the ω-axis between $0 \leq k \leq 2 \pi$

$$
\left.X\left(e^{j \omega}\right)\right|_{\omega=2 \pi k / N}=\sum_{n=-\infty}^{\infty} x[n] e^{-j 2 \pi k / N}, \quad 0 \leq k \leq N-1
$$

Relation Between the Discrete-Time Fourier Transform and the DFT

- The N-point DFT sequence $X[k]$ is precisely the set of frequency samples of the Fourier transform $X\left(e^{j \omega}\right)$ of the length $-N$ sequence $x[n]$ at N equally spaced frequencies, $\omega_{k}=2 \pi k / N, 0 \leq k \leq N-1$
- Hence, the DFT $X[k]$ represents a frequency domain representation of the sequence $x[n]$
- Since the computation of the DFT samples involve a finite sum, for time domain sequences with finite sample values, the DFT always exists

Numerical Computation of the Fourier Transform Using the DFT

- The DFT provides a practical approach to the numerical computation of the Fourier transform of a finite-length sequence
- Let $X\left(e^{j \omega}\right)$ be the Fourier transform of a length- N sequence $x[n]$
- We wish to evaluate $X\left(e^{j \omega}\right)$ at a dense grid of frequencies $\omega_{k}=2 \pi k / M, 0 \leq k \leq M-1$, where $M \gg N$:

$$
X\left(e^{j \omega}\right)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega_{k} n}=\sum_{n=0}^{N-1} x[n] e^{-j 2 \pi k n / M}
$$

Numerical Computation of the Fourier Transform Using the DFT

- Define a new sequence $x_{e}[n]$ obtained from $x[n]$ by augmenting with $M-N$ zero-valued samples

$$
x_{e}[n]=\left\{\begin{array}{cc}
x[n], & 0 \leq n \leq N-1 \\
0, & N \leq n \leq M-1
\end{array}\right.
$$

- Making use of $x_{e}[n]$ we obtain

$$
X\left(e^{j \omega_{k}}\right)=\sum_{n=0}^{M-1} x_{e}[n] e^{-j 2 \pi n n / M}
$$

which is an M-point DFT $X_{e}[k]$ of the length- M sequence $x_{e}[n]$

Example 5.5:

- Compute the N-point DFT of the length-16 sequence $x[n]=\cos (6 \pi n / 16)$ of angular frequency $\omega_{0}=0.375 \pi$
- The 16 -point DFT of $x[n]$ is (Example 5.2)

$$
X[k]= \begin{cases}8, & \text { for } k=3 \text { and } k=13 \\ 0, & \text { otherwise }\end{cases}
$$

- Since the Fourier transform $X\left(e^{j \omega}\right)$ is a continuous function of ω, we can plot it more accurately by computing the DFT of the sequence $x[n]$ at a dense grid of frequencies using MAtLAB

Example 5.5: $\quad x[n]=\cos (6 \pi n / 16)$

- 16-point DFT denoted by 'o'
- 512-point DFT denoted by
, \qquad ,
- Normalized frequency
with $2 \pi=1$;
$3 / 16=0.1875$

Sampling the Fourier Transform

- The discrete Fourier transform DFT can also be obtained by sampling the discrete-time Fourier transform DTFT, $X\left(e^{j \omega}\right)$, uniformly on the ω-axis between $0 \leq \omega \leq 2 \pi$, at $\omega_{\mathrm{k}}=2 \pi k / N, k=0,1, \ldots, N-1$

$$
\begin{aligned}
X[k] & =\left.X\left(e^{j \omega}\right)\right|_{\omega=2 \pi k / N} \\
& =\sum_{n=0}^{N-1} x[n] e^{-j 2 \pi k n / N}, \quad k=0,1, \ldots, N-1
\end{aligned}
$$

- $X[k]$ is now a finite-length sequence of length N like the time domain sequence $x[n]$

Operations on Finite-Length Sequences

- Like the Fourier transform, the DFT also satisfies a number of properties that are useful in signal processing
- Some of the properties are essentially identical to those of the Fourier transform, while some others are different
- Differences between two important properties are discussed:
- Shifting and
- Convolution

Circular Shift of a Sequence

- Several DFT properties and theorems involve shifting in the time domain and in the frequency domain
- The operation of shifting of a finite-length sequence in time domain is referred to as circular time-shifting
- In frequency domain the corresponding operation is referred to as circular frequency-shifting

Circular Shift of a Sequence

- Consider length- N sequences defined for the range $0 \leq n \leq N-1$
- Such sequences have zero for $n<0$ and $n \geq N$
- Shifting such a sequence $x[n]$ for any arbitrary integer n_{0}, the resulting sequence $x_{1}[n]=x\left[n-n_{0}\right]$ is no longer defined for the range $0 \leq n \leq N-1$
- It is necessary to define a shift operation that will keep the shifted sequence in the range $0 \leq n \leq N-1$
- This is achieved using the modulo operation

Circular Shift of a Sequence

- Let $0,1, \ldots, N$ be a set of N positive integers and let m be any integer
- The integer r obtained by evaluating m modulo N is called the residue and it is an integer with a value between 0 and $N-1$
- The modulo operation is denoted as

$$
\langle m\rangle_{N}=m \text { modulo } N
$$

- If we let $r=\langle m\rangle_{N}$, then $r=m+l N$
where l is an integer to make $m+l N$ a number in the range $0 \leq n \leq N-1$

Circular Shift of a Sequence

- Using the modulo operation, the circular shift of a length $-N$ sequence $x[n]$ can be defined using the equation

$$
x_{C}[n]=x\left[\left(n-n_{0}\right\rangle_{N}\right]
$$

where $x[n]$ is also length $-N$ sequence

- The concept of circular shift of a finite-length sequence corresponds to "rotation" of the sequence within the interval $0 \leq n \leq N-1$

Representation of a Finite-Length Sequence

- Consider a general sequence $x[n]$ that is of finite-length, i.e., for some integers N_{1} and N_{2}, $x[n]=0$ outside the range $-N_{1} \leq n \leq N_{2}$

- The shifting operation of finite-length sequences can be represented via periodic sequences

Representation of Aperiodic Signals

- A periodic sequence, $x_{p}[n]$, is formed from the aperiodic sequence with $x[n]$ as one period

- As N approaches infinity, $x_{p}[n]=x[n]$ for any finite value n

Circular Time-Shift of a Sequence

- Shifting of a finite sequence corresponds to rotation

Circular Convolution

- Consider two length- N sequences, $g[n]$ and $h[n]$
- Their linear convolution is a sequence of length $2 \mathrm{~N}-1$

$$
y_{L}[n]=\sum_{m=0}^{N-1} g[m] h[n-m], \quad n=0,1, \ldots, 2 N-1
$$

- In order to calculate the above linear convolution both length- N sequences have been zero-padded to extend their length to $2 \mathrm{~N}-1$

Circular Convolution

- A convolution-like operation resulting in a length- N sequence $y_{C}[n]$, called a circular convolution is defined as

$$
y_{C}[n]=\sum_{m=0}^{N-1} g[m] h\left[\langle n-m\rangle_{N}\right]
$$

- The above operation is often referred to as an N-point circular convolution
- Due to length $-N$ sequences, the N-point circular convolution is denoted as

$$
y_{C}[n]=g[n] \cap h[n]=h[n] \cap g[n]
$$

Application of Circular Convolution

- The N-point circular convolution does not correspond to the linear convolution of two length- N sequences
- The circular convolution can, however, be used to compute the linear convolution correctly:
- The linear convolution of two finite-length sequences of length N and M results in a sequence of length $N+M-1$
- The circular convolution must be computed for the length $N+M-1$ by zero-padding the original sequences

Classification of Finite-Length Sequences

- For a finite-length sequence defined for $0 \leq n \leq N-1$, all definitions of symmetry do not apply
- The definitions of symmetry in the case of finitelength sequences are given such that the symmetric and antisymmetric parts of length- N sequence are also of length N and defined for the same range of values of the time index n

Classification Based on Geometric Symmetry

- Geometric symmetry is an important property in DSP, i.e., in the properties of FIR filters
- A length- N symmetric sequence $x[n]$ satisfies the condition

$$
x[n]=x[N-1-n]
$$

- A length- N antisymmetric sequence $x[n]$ satisfies the condition

$$
x[n]=-x[N-1-n]
$$

Geometric Symmetry of Sequences

Type 1 Symmetry with Odd Length

- Type 1 symmetric sequence, with $N=9$, is

$$
x[n]=x[0]+x[1]+x[2]+x[3]+x[4]+x[5]+x[6]+x[7]+x[8]
$$

- The Fourier transform is

$$
\begin{aligned}
X\left(e^{j \omega}\right)= & x[0]+x[1] e^{-j \omega}+x[2] e^{-j 2 \omega}+x[3] e^{-j 3 \omega}+x[4] e^{-j 4 \omega} \\
& +x[5] e^{-j 5 \omega}+x[6] e^{-j 6 \omega}+x[7] e^{-j 7 \omega}+x[8] e^{-j 8 \omega}
\end{aligned}
$$

- Now, $x[0]=x[8], x[1]=x[7], x[2]=x[6], x[3]=x[5]$

$$
\begin{aligned}
X\left(e^{j \omega}\right)= & x[0]\left(1+e^{-j 8 \omega}\right)+x[1]\left(e^{-j \omega}+e^{-j 7 \omega}\right) \\
& +x[2]\left(e^{-j 2 \omega}+e^{-j 6 \omega}\right)+x[3]\left(e^{-j 3 \omega}+e^{-j 5 \omega}\right)+x[4] e^{-j 4 \omega}
\end{aligned}
$$

Type 1: Symmetry with Odd Length

- Taking $e^{-j 4 \omega}$ as a common factor in each group of terms

$$
\begin{aligned}
& x\left(e^{j \omega}\right)=x[0] e^{-j 4 \omega}\left(e^{j \omega \omega}+e^{-j 4 \omega}\right)+x[1] e^{-j 4 \omega}\left(e^{-j \beta \omega}+e^{-j 3 \omega}\right) \\
& +\times\left[2 e^{-j 4 \omega}\left(e^{j 2 \omega}+e^{-j 2 \omega}\right)+\times[3] e^{-j 4 \omega}\left(e^{j \omega}+e^{-j \omega}\right)+\times[4] e^{-j 4 \omega}\right. \\
& X\left(e^{j \omega}\right)=e^{-j 4 \omega}\left[x[0]\left(e^{j 4 \omega}+e^{-j 4 \omega}\right)+x[1]\left(-e^{-j \omega}+e^{-j \beta \omega}\right)\right. \\
& \left.+x[2]\left[e^{i 2 \omega}+e^{-j 2 \omega}\right)+\chi[3]\left(e^{i \omega}+e^{-j \omega}\right)+x[4]\right\} \\
& \longrightarrow X\left(e^{j \omega}\right)=e^{-j 4 \omega}\{2 x[0] \cos (4 \omega)+2 x[1] \cos (3 \omega) \\
& +2 \times[2] \cos (2 \omega)+2 \times[3] \cos (\omega)+x[4]\}
\end{aligned}
$$

Type 1: Symmetry with Odd Length

- Notice that the quantity inside the braces, $\{$ \}, is a real function of ω and can assume positive or negative values in the range $0 \leq \omega \leq \pi$
- The of the sequence is given by $\theta(\omega)=-4 \omega+\beta$ where β is either 0 or π, and hence the phase is a linear function of ω
- In general, for Type 1 linear-phase sequence of length- N

$$
X\left(e^{j \omega}\right)=e^{-j(N-1) \omega / 2}\left\{x\left[\frac{N-1}{2}\right]+2 \sum_{n=1}^{(N-1) / 2} x\left[\frac{N-1}{2}-n\right] \cos (\omega n)\right\}
$$

Type 2: Symmetry with Even Length

- Similarly, the Fourier transform of Type 2 symmetric sequence, with $N=8$, can be written

$$
\begin{aligned}
X\left(e^{j \omega}\right)= & e^{-j 7 \omega / 2}\left\{2 x[0] \cos \left(\frac{7 \omega}{2}\right)+2 x[1] \cos \left(\frac{5 \omega}{2}\right)\right. \\
& \left.+2 x[2] \cos \left(\frac{3 \omega}{2}\right)+2 x[3] \cos \left(\frac{\omega}{2}\right)\right\}
\end{aligned}
$$

where the phase is given by $\theta(\omega)=-\frac{7 \omega}{2}+\beta$

- In general, for Type 2 linear-phase sequence of length- N

$$
X\left(e^{j \omega}\right)=e^{-j(N-1) \omega / 2}\left\{2 \sum_{n=1}^{N / 2} x\left[\frac{N}{2}-n\right] \cos \left(\omega\left(n-\frac{1}{2}\right)\right)\right\}
$$

Type 3: Antisymmetry with Odd Length

- The Fourier transform of Type 3 antisymmetric sequence, with $N=9$, is (notice that $x[4]=0$)

$$
\begin{aligned}
X\left(e^{j \omega}\right)= & x[0]+x[1] e^{-j \omega}+x[2] e^{-j 2 \omega}+x[3] e^{-j 3 \omega}+x[4] e^{-j 4 \omega} \\
& +x[5] e^{-j 5 \omega}+x[6] e^{-j 6 \omega}+x[7] e^{-j 7 \omega}+x[8] e^{-j 8 \omega}
\end{aligned}
$$

- Now, $x[0]=-x[8], x[1]=-x[7], x[2]=-x[6], x[3]=-x[5]$ and $x[4]=0$

$$
\begin{aligned}
X\left(e^{j \omega}\right)= & x[0]\left(1-e^{-j 8 \omega}\right)+x[1]\left(e^{-j \omega}-e^{-j 7 \omega}\right) \\
& +x[2]\left(e^{-j 2 \omega}-e^{-j 6 \omega}\right)+x[3]\left(e^{-j 3 \omega}-e^{-j 5 \omega}\right) \\
X\left(e^{j \omega}\right)= & e^{-j 4 \omega}\left\{x[0]\left(e^{j 4 \omega}-e^{-j 4 \omega}\right)+x[1]\left(e^{j 3 \omega}-e^{-j 3 \omega}\right)\right. \\
& \left.+x[2]\left(e^{j 2 \omega}-e^{-j 2 \omega}\right)+x[3]\left(e^{j \omega}-e^{-j \omega}\right)\right\}
\end{aligned}
$$

Type 3: Antisymmetry with Odd Length

- Multiplying by $j=e^{j \pi / 2}$ and 2, we obtain

$$
\begin{aligned}
X\left(e^{j \omega}\right) & =e^{-j 4 \omega} e^{j \pi / 2}\left\{2 x[0] \frac{1}{2 j}\left(e^{j 4 \omega}-e^{-j 4 \omega}\right)+2 x[1] \frac{1}{2 j}\left(e^{j 3 \omega}-e^{-j 3 \omega}\right)\right. \\
& \left.+2 x[2] \frac{1}{2 j}\left(e^{j 2 \omega}-e^{-j 2 \omega}\right)+2 x[3] \frac{1}{2 j}\left(e^{j \omega}-e^{-j \omega}\right)\right\}
\end{aligned}
$$

which results in

$$
\begin{aligned}
X\left(e^{j \omega}\right)= & e^{j(-4 \omega+\pi / 2)}\{2 x[0] \sin (4 \omega)+2 x[1] \sin (3 \omega) \\
& +2 x[2] \sin (2 \omega)+2 x[3] \sin (\omega)\}
\end{aligned}
$$

The phase is now $\theta(\omega)=-4 \omega+\frac{\pi}{2}+\beta$

- The antisymmetry introduces a phase shift of $\pi / 2$

Type 3 and 4: Antisymmetry with Odd and Even Length

- In general, the Fourier transform of Type 3 linearphase antisymmetric sequence of odd length- N is

$$
X\left(e^{j \omega}\right)=j e^{-j(N-1) \omega / 2}\left\{2 \sum_{n=1}^{(N-1) / 2} x\left[\frac{N-1}{2}-n\right] \sin (\omega n)\right\}
$$

- Similarly, the Fourier transform of Type 4 linearphase antisymmetric sequence of even length- N is

$$
X\left(e^{j \omega}\right)=j e^{-j(N-1) \omega / 2}\left\{2 \sum_{n=1}^{N / 2} x\left[\frac{N}{2}-n\right] \sin \left(\omega\left(n-\frac{1}{2}\right)\right)\right\}
$$

- In both cases, $j=e^{j \pi / 2}$ introduces a phase shift of $\pi / 2$

Discrete Fourier Transform Theorems

- The important theorems hold for DFT with time domain sequences length- N and their DFTs of length- N, e.g.,
- Linearity
- Circular time-shifting
- Circular frequency-shifting
- Circular convolution
- Modulation
- Parseval's theorem
- The proofs are straightforward using the definitions

Linear Convolution of Two Finite-Length Sequences

- Let $g[n]$ and $h[n]$ be two finite-length sequences of lengths N and M, respectively
- The objective is to implement their linear convolution

$$
y_{L}[n]=g[n] \circledast h[n]
$$

- The length of the sequence $y_{L}[n]$ is $L=N+M-1$
- The linear convolution can be obtained using the circular convolution with the correct length equal to L

Linear Convolution of Two Finite-Length Sequences

- Define two length- L sequences $g_{e}[n]$ and $h_{e}[n]$ by appending $g[n]$ and $h[n]$ with zero-valued samples

$$
\begin{aligned}
& g_{e}[n]=\left\{\begin{array}{cc}
g[n], & 0 \leq n \leq N-1 \\
0, & N \leq n \leq L-1
\end{array}\right. \\
& h_{e}[n]=\left\{\begin{array}{cc}
h[n], & 0 \leq n \leq M-1 \\
0, & M \leq n \leq L-1
\end{array}\right.
\end{aligned}
$$

- Then,

$$
y_{L}[n]=y_{C}[n]=g_{e}[n](L) h_{e}[n]
$$

Linear Convolution of Two Finite-Length Sequences Using the DFT

- The linear convolution of two finite-length sequences $g[n]$ and $h[n]$ can be implemented using the DFTs of length $L=N+M-1$ as follows

Data Sequence of Unknown Length

- Problem: Filtering of a data sequence of unknown, or infinite length with an FIR filter, with impulse response, $h[n]$, of length M using the DFT

Linear Convolution of Finite-Length Sequences

- Filtering of a data sequence of unknown (infinite) length with an FIR filter, with impulse response, $h[n]$, of length M can be implemented via circular convolution, i.e., using the DFT
- The data sequence $x[n]$ is first segmented into finite-length sections of length- L
- Two methods to implement the linear convolution
- Overlap-add method
- Overlap-save method

Overlap-Add Method

- The causal data sequence $x[n]$ is first segmented into segments of length L
- The original sequence $x[n]$ can now be written as

$$
x[n]=\sum_{m=0}^{\infty} x_{m}[n-m L]
$$

where

$$
x_{m}[n]=\left\{\begin{array}{cc}
x[n+m L], & 0 \leq n \leq L-1 \\
0, & \text { otherwise }
\end{array}\right.
$$

Overlap-Add Method

- Original sequence, $x[n]$, of unknown length
- Non-overlapping length-L segments of $x[n]$
- Adding the segments gives
$x[n]=\sum_{m=0}^{\infty} x_{m}[n-m L]$

Overlap-Add Method

- Substituting the segmented form of $x[n]$ into the convolution sum

$$
\begin{aligned}
y[n] & =\sum_{k=0}^{M-1} h[k] x[n-k]=\sum_{k=0}^{M-1} h[k] \sum_{m=0}^{\infty} x_{m}[n-k-m L] \\
& =\sum_{m=0}^{\infty}\left(\sum_{k=0}^{M-1} h[k] x_{m}[n-k-m L]\right)=\sum_{m=0}^{\infty} y_{m}[n-m L]
\end{aligned}
$$

where $y_{m}[n]=h[n] \circledast x_{m}[n]$

- The linear convolutions of $h[n]$ and the segments of $x_{m}[n]$, which all are all of length $-N,(N=M+L-1)$ are thus added

Overlap-Add Method

- The linear length- N convolutions of $h[n]$ and $x_{m}[n]$
- The overlapping parts of the linear convolutions are added

$$
y[n]=\sum_{m=0}^{\infty} y_{m}[n-m L]
$$

Overlap-Save Method

- It is possible to implement the linear convolution also by performing circular convolutions of length shorter than ($M+L-1$)
- In this case, it is necessary to segment the original sequence $x[n]$ is into overlapping blocks $x_{m}[n]$,
- The terms of the circular convolution of $h[n]$ with $x_{m}[n]$ that correspond to the terms obtained by a linear convolution of $h[n]$ and $x_{m}[n]$
- The other, incorrect, terms of the circular convolution are thrown away

Overlap-Save Method

- Original sequence, $x[n]$, of unknown length
- Overlapping length- N segments of $x_{m}[n]$
- Circular convolution is implemented with length N

Overlap-Save Method

- The length- N circular convolutions of length-M impulse response, $h[n]$, and the blocks $x_{m}[n]$ of length- N
- The incorrect $M-1$ first terms in each circular convolution are rejected

Summary

- The discrete Fourier transform, DFT, of a finitelength sequence was discussed
- The length of the transform coefficient sequence, i.e., the length of the DFT, is the same as the length of the discrete-time sequence
- The DFT is widely used in a number of digital signal processing applications
- In practice, the DFT can be efficiently implemented using the Fast Fourier Transform (FFT) algorithm

