Finite-Length
Discrete Transform



Introduction

* In this chapter, finite-length transforms are
discussed

* [n practice, it is often convenient to map a finite-

ength sequence from time domain into a finite-

ength sequence of the same length in the
frequency domain

* The samples of the forward transform are unique
and represented as a linear combination of the
samples of the time domain sequence

* The samples of the inverse transform are obtained
similarly from the samples of the transform domain
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Introduction

* In some applications, a very long-length time
domain sequence is broken up into a set of short-
length sequences and a finite-length transform is
applied to each short-length sequence

* The transformed sequences are processed in the
transform domain

* Time domain equivalents are produced using the
Inverse transform

* The processed short-length sequences are
grouped together in the time domain to form the
final long-length sequence
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Orthogonal Transforms

* Let x[n] denote a length-N time domain sequence
with X[k] denoting the coefficients of its N-point

orthogonal transform
* A general form of the orthogonal transform pair is

of the form
N —

p_‘

xn]z// kn 0<k<N-1

n=0

lN
:WZ kn 0<n<N-1
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Orthogonal Transforms

* |In the transform pair, the basis sequences
yik,n] are also length-N sequences in both
domains

* |In the class of finite-dimensional transforms, the
basis sequences satisfy the condition

1 5 1, 1=k
2N ylkon] weflon]=1
an_:;"”[ nlv'lln] {o, | %k

« Basis sequences yjk,n] satisfying the above
condition are said to be orthogonal to each other
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Orthogonal Transforms

* An important consequence of the orthogonality
of the basis sequence is the energy
preservation property of the transform

- The energy > |xn] ‘2 of the time domain
seqguence X[n] can be computed in the
transform domain

* The energy can be written as

N—

NZ;‘x[n] * 5 ] o]

n=0

;_a
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Orthogonal Transforms

* Let us express x[n] in terms of its transform
domain representation

3 L]

= :ﬁrlx[k(gx*[n]z//[k,n]j:ﬁrlx[k] X[k
— | Sl

which is known as the Parseval’s relation
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The Discrete Fourier Transform

* |n the following, the discrete Fourier transform,
DFT, is defined

* The inverse transformation, IDFT is developed

« Some important properties of the DFT are
discussed

 DFT has several important applications:

— Numerical calculation of the Fourier transform
in an efficient way

— Implementation of linear convolution using
finite-length sequences
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Definition of the DFT

* Discrete Fourier transform (DFT) of the
length-N sequence x[n] is defined by

N -1
X[k]=> x{nle”**"  0<k<N-I
n=0

. —J27kn/N
* The basis sequences are: w[k,n]:e J<mh
which are complex exponential sequences

« As a result, DFT coefficients X[k] are complex
numbers, even if x[n] are real

* |t can be easily shown that the basis sequences
el2#N - gre orthogonal
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Discrete Fourier Transform (DFT)

Common notation with DFT: W= eJ27N

DFT can now be written as follows:
N —1

X[k]=>'xIn]W,“", k=0,..,N-1

n=0

Inverse Discrete Fourier Transform (IDFT):

N -1
x[n]= ﬁz X[k] W, ™, n=0,1,.,N-1
k=0

X[k] and x[n] are both sequences of finite-length N
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Discrete Fourier Transform Pair

* The analysis equation:

X[k]= ¥ X[n] W, ", k=01,..N-I

* The synthesis equation:

N
x[n] = ﬁz X[k]W, ™, n=0,L..,N—1
n=0

DFT

* DFT pairis denoted as:  x[n] ¢« X[K]

© 2009 Olli Simula T-61.3010 Digital Signal Processing;
Mitra 3rd Edition: Chapter 5



Relation Between the Discrete-Time
Fourier Transform and the DFT

« The DTFT X(el?) of the length-N sequence x[n]
defined for 0<n<N-1 is given by:

o0 N-1
X(e)= Y xn] e =) x[n] "}
N=—00 n=0
« By uniformly sampling X(e!%) at N equally spaced
frequencies m, = 27k/N, 0<k<N-1, on the @w-axis

between 0<k<2rx
X (1) = > x[n] e ™M 0<k<N-1

0=27K/N oo
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Relation Between the Discrete-Time
Fourier Transform and the DFT

* The N-point DFT sequence X[K] is precisely the
set of frequency samples of the Fourier transform
X(e)?) of the length-N sequence x[n] at N equally
spaced frequencies, o, = 27k/N, 0<k<N-1

* Hence, the DFT X[k] represents a frequency
domain representation of the sequence x[n]

« Since the computation of the DFT samples
involve a finite sum, for time domain sequences
with finite sample values, the DFT always exists
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Numerical Computation of the
Fourier Transform Using the DFT

 The DFT provides a practical approach to the
numerical computation of the Fourier transform
of a finite-length sequence

« Let X(e!?) be the Fourier transform of a length-N
sequence x[n]

« We wish to evaluate X(e!®) at a dense grid of
frequencies w, = 27k/IM, 0<k<M-1, where M>>N:

o0 N—1

X (e1?) = Zx[n] oo :Zx[n] o270/ M

N=—c0 n=0
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Numerical Computation of the

Fourier Transform Using the DFT

» Define a new sequence x.[n] obtained from x[n]
by augmenting with M-N zero-valued samples

X[n], 0<n<N-1
0, N<nM -1

« Making use of x,[n] we obtain
M —1
X (eja)k ) — er[n] e—jZﬂkn/M
n=0

which is an M-point DFT X_k] of the length-M
sequence X [N]
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Example 5.5:

« Compute the N-point DFT of the length-16
sequence X[n]=cos(6m/16) of angular frequency
@,=0.3757

* The 16-point DFT of x[n] is (Example 5.2)
8, fork=3andk=13
- |

0, otherwise

 Since the Fourier transform X(e!?) is a continuous
function of o, we can plot it more accurately by
computing the DFT of the sequence x[n] at a
dense grid of frequencies using MATLAB
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Example 5.5: x[n]=cos(6:m/16)

| + 16-point DFT
/ﬁ\ f\ | denoted by ’0’
| J
i fj \ | | e 512-point DFT
£ / | / \\ 1 denoted by
g . . ’
’ / \1{ / .| « Normalized
i / | | \A | frequency

.i./\f/\ﬁ \[f\/\w VW/“M \v\f\‘ with 27=1;

IAREEE RN | %
0 0.1 0. U3— 04 —05 _ 08 07 08 09 1
o T T e— — _
-—— 3/16 =0.1875
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Sampling the Fourier Transform

* The discrete Fourier transform DFT can also be
obtained by sampling the discrete-time Fourier
transform DTFT, X(el®), uniformly on the w -axis
between 0 < w <2m, at w,= 2nk/N, k=0,1,... ,N-1

X[k]=X (')

w=27K/N

=) x[nle **N Kk =0,1,.,N-1

» X[k] is now a finite-length sequence of length N
like the time domain sequence X[n]
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Operations on Finite-Length
Sequences

* Like the Fourier transform, the DFT also satisfies
a number of properties that are useful in signal
processing

« Some of the properties are essentially identical to
those of the Fourier transform, while some others
are different

» Differences between two important properties are
discussed:

— Shifting and
— Convolution
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Circular Shift of a Sequence

« Several DFT properties and theorems involve
shifting in the time domain and in the frequency
domain

* The operation of shifting of a finite-length
sequence in time domain is referred to as
circular time-shifting

* |n frequency domain the corresponding operation
Is referred to as circular frequency-shifting
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Circular Shift of a Sequence

« Consider length-N sequences defined for the
range 0<n<N-1

* Such sequences have zero for n<0 and n=N

« Shifting such a sequence x[n] for any arbitrary
Integer n,, the resulting sequence x,[n]=x[n-n,] IS
no longer defined for the range 0<=n<N-1

* |t is necessary to define a shift operation that will
keep the shifted sequence in the range 0<n<N-1

* This is achieved using the modulo operation
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Circular Shift of a Sequence

* Let 0,1, ..., N be a set of N positive integers and
let m be any integer

* The integer r obtained by evaluating m modulo N is

called the residue and it is an integer with a value
between 0 and N-1

* The modulo operation is denoted as

<m>N = m modulo N

- Ifwe let r=(m) ,then r=m+IN

where | is an integer to make m+IN a number in the
range 0<n<N-1
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Circular Shift of a Sequence

» Using the modulo operation, the circular shift of a
length-N sequence x[n] can be defined using the
equation

Xc|n]= x[(n — nO>N]
where x[n] is also length-N sequence

* The concept of circular shift of a finite-length
sequence corresponds to “rotation” of the
sequence within the interval 0=n<N-1
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Representation of a Finite-Length
Sequence

« Consider a general sequence x[n] that is of
finite-length, i.e., for some integers N, and N,,
X[n] = 0 outside the range -N, <n <N,

1

* The shifting operation of finite-length sequences
can be represented via periodic sequences
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Representation of Aperiodic Signals

* A periodic sequence, x;[n], is formed from the

aperiodic sequence with x[n] as one period
X[n]

1
ol

N N, 0 N, N N

* As N approaches infinity, x;[n] = x[n] for any finite
value n
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Circular Time-Shift of a Sequence

« Shifting of a finite sequence corresponds to
rotation

X|n]
O 1 2 3 n
X[(n—1),]
Al
O 1 2 3 n
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Circular Convolution

« Consider two length-N sequences, g[n] and h[n]

* Their linear convolution is a sequence of length
2N-1

yL[n] —

N -1

" g[mlh[n—m], n=0.1..2N -1
m=0
 In order to calculate the above linear convolution
both length-N sequences have been zero-padded
to extend their length to 2N-1
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Circular Convolution

A convolution-like operation resulting in a length-N
sequence Y[n], called a circular convolution is
defined as

N-—1
Ye[n]=D glmih(n—m) ]
m=0

* The above operation is often referred to as an
N-point circular convolution

* Due to length-N sequences, the N—point circular
convolution is denoted as

yc[n] = gIn](n) h[n] = h[n](n) g[n]
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Application of Circular Convolution

* The N-point circular convolution does not
correspond to the linear convolution of two
length-N sequences

* The circular convolution can, however, be used to
compute the linear convolution correctly:

— The linear convolution of two finite-length
sequences of length N and M results in a
sequence of length N+M-1

— The circular convolution must be computed for
the length N+M-1 by zero-padding the original
sequences

© 2009 Olli Simula T-61.3010 Digital Signal Processing; 29
Mitra 3rd Edition: Chapter 5



Classification of
Finite-Length Sequences

* For a finite-length sequence defined for 0<n<N-1,
all definitions of symmetry do not apply

* The definitions of symmetry in the case of finite-
length sequences are given such that the
symmetric and antisymmetric parts of length-N
sequence are also of length N and defined for the
same range of values of the time index n
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Classification Based on
Geometric Symmetry

« Geometric symmetry is an important property in
DSP, i.e., in the properties of FIR filters

* A length-N symmetric sequence x[n] satisfies
the condition

X[n] = X[N-1-n]
* A length-N antisymmetric sequence x[n] satisfies
the condition
X[n] = -x[N-1-n]
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Geometric Symmetry of Sequences

Positive * e i |

symmetry TllrllTT ) TllTiTllTTn
(@) Type 1,N=9 - _-(b) Type 2, N=10

Center of symmetry
Negative { xnj T ) { ],
symmetry [t | B I I S § K i
T T 1]
(c) Type 3, N=9 (d) Type 4, N=10
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Type 1 Symmetry with Odd Length

* Type 1 symmetric sequence, with N=9, is
x[n]= x[0]+ x[1]+ x[2]+ x[3]+ x[4]+ x[5]+ x[6]+ x[7]+ 8]
* The Fourier transform is
X (ejw): x[0]+ x[1 71 + x[2]e772” + x[3] 7 + x[4]e 71

+x[5le 1+ x[6f 100 + x[7f 77 + x[8]e 1%
« Now, x[0]=x[8], X[1]=X[7], X[2]=X[6], X[3]=X[5]
X (&9 )=x[o]1+e 7% )+ x[ife 1 +e7177)

x(2fe 2 +e i ) x3]le 2 +e 1 )1 x(afe i
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Type 1: Symmetry with Odd Length

« Taking e14? as a common factor in each group of
terms

N A
wx[2le el e 2 by xf3l (el + e ) xfafe i
X(e)=e e ofe +e 4 o xfife &)
+ X[2](ej2w + e_j2”)+ X[3](ej“’ + e‘j”)+ x[4]}

‘ X (e Je ): e 1 12x[0]cos(4@) + 2x[1]cos(3w)

+ 2X[2]cos(2a)) — 2X[3]cos(a)) + X[4]}‘
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Type 1: Symmetry with Odd Length

* Notice that the quantity inside the braces, {}, is
a real function of w and can assume positive or
negative values in the range O<sw=r

» The of the sequence is given by 6(w)=-40w+ f
where fis either 0 or z, and hence the phase is
a linear function of w

* In general, for Type 1 linear-phase sequence of
length-N

| | (N-1)/2
X (e “"): eJ(Nl)”/z{x[%h 2 Z X[% — n]cos(a)n)}
n=l1
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Type 2: Symmetry with Even Length

« Similarly, the Fourier transform of Type 2
symmetric sequence, with N=8, can be written

X (e Jo ): g J7e/2 {2X[O]COS(7TQ)) + ZX[I]COS(ST”)
+2x[2]cos(32) + 2X[3]cos(%)}
where the phase is given by 6(w)=-12+ 3

* In general, for Type 2 linear-phase sequence of
length-N

X(e"“’)=e‘““‘”””{ ix[ nJeos(e(n >)}
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Type 3: Antisymmetry with Odd Length

* The Fourier transform of Type 3 antisymmetric
sequence, with N=9, is (notice that x[4]=0)
X (€7 )= x[0]+ X[ + x[2Je 2% + x[3} 1> + x[4] 4

+ |5k + x[6fe 1 + x[7 7V + x[8]e 7

* Now, x[0]=-x[8], X[1]=-X[7], X[2]=-X[6], X[3]=-X[5] and x[4]=0

X(ejw) x[o]1 e J8“’)+X[1](e‘j“’—e‘”w)
exfe e et ) xfsfle e e )
Xle1)=e i ol —e 1 ) xife v e )

+ x[2]( 20 e‘jza’)+ x[3](ej” = e‘j“’)}
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Type 3: Antisymmetry with Odd Length
» Multiplying by j=e/72 and 2, we obtain
X (e1)=e1we i pxf0] (14 —e 1 )4 2x{1] L e —e )
P2l {e e ) e e )
which results in

X (€1 )= eI 4/2 [ox[0]sin(4@) + 2x[1 sin(3ew)
+2x[2]sin(2) + 2x[3]sin(w)}

The phase is now 6’(0)):—4a)+%+ﬂ
* The antisymmetry introduces a phase shift of 7/2
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Type 3 and 4: Antisymmetry with Odd
and Even Length

* In general, the Fourier transform of Type 3 linear-
phase antisymmetric sequence of odd length-N s

| | (N=1)/2
X(e"”): je_J(N_l)w/2{2 ZX[%— n]sin(a)n)}
=1

« Similarly, the Fourier transform of Type 4 linear-
phase antisymmetric sequence of even length-N is

N

N/2

(ol s it

* In both cases, j=e”2 introduces a phase shift of /2

Vo
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Discrete Fourier Transform Theorems

* The important theorems hold for DFT with time
domain sequences length-N and their DFTs of
length-N , e.qg.,

— Linearity

— Circular time-shifting

— Circular frequency-shifting
— Circular convolution

— Modulation

— Parseval’s theorem

* The proofs are straightforward using the definitions
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Linear Convolution of Two
Finite-Length Sequences

* Let g[n] and h[n] be two finite-length sequences
of lengths N and M, respectively

* The objective is to implement their linear
convolution

YL[n]: g[n] *) h[n]
* The length of the sequence y, [n] is L=N+M-1

* The linear convolution can be obtained using the
circular convolution with the correct length equal
toL
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Linear Convolution of Two
Finite-Length Sequences

» Define two length-L sequences g.[n] and h,[n] by
appending g[n] and h[n] with zero-valued

samples
fg[n] o<n<N-1
ge[n]_{ 0, N<n<L-1
he[n]:{h[n], 0<nN<M -1
0, M<n<L-1
 Then,

Y. [n]=ye[n]=g,[n] ©he[n]
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Linear Convolution of Two
Finite-Length Sequences Using the DFT

* The linear convolution of two finite-length
sequences g[n] and h[n] can be implemented
using the DFTs of length L=N+M-1 as follows

g[n]

—>

Length-N

Zero-padding
(M —1) zeros

JelN]

with

h[n]

—

Length-M

Zero-padding

with

Ne[n]

(N+M —1)-
point DFT

(N —1) zeros

© 2009 Oll1 Simula

(N+M —1)—
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point DFT
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Data Sequence of Unknown Length

* Problem: Filtering of a data sequence of unknown,
or infinite length with an FIR filter, with impulse
response, h[n], of length M using the DFT

h{n)

.[ﬂhu

0 -1

x(n)

,,BHlLLL,“H“mu“‘Tmmmjgmul“[[lllfﬂ“ n
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Linear Convolution of
Finite-Length Sequences

* Filtering of a data sequence of unknown (infinite)
length with an FIR filter, with impulse response,
h[n], of length M can be implemented via circular
convolution, i.e., using the DFT

* The data sequence x|[n] is first segmented into
finite-length sections of length-L

* Two methods to implement the linear convolution
* Overlap-add method
* Overlap-save method
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Overlap-Add Method

* The causal data sequence x|[n] is first segmented
iInto segments of length L

* The original sequence x[n] can now be written as

x[n]:ioxm[n_mq

where

] x[n+mL], 0<n<L-1
XmlN]= 0, otherwise
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Overlap-Add Method

x(n}:

 Qriginal
sequence, X[n], of
unknown length

» * Non-overlapping

length-L
| | | segments of x[n]
L ,nﬂmlg.t,.,..,,. .+ Adding the

0 ;lllll‘ segments gives

xzé(") TT I Zx [n—mL]
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Overlap-Add Method

« Substituting the segmented form of x[n] into the
convolution sum

Zh[k n—k]= Zh Z n—k—-mL]
i[?oh [n—k—mL]j:Z;)ym[n—mL]

where y_[n]=h[n]® x_[n]

* The linear convolutions of h[n] and the segments
of x..[n], which all are all of length-N, (N=M+L-1)
are thus added
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Overlap-Add Method

Yo[n]= xo(M)@h(n)

* The linear length-N
convolutions of h[n]
and x[n]

| ?[ * The overlapping
‘IIQ qar " parts of the linear

:

+

Vi[n]= % (n)@hin)

1

£

————— g ————

0
. o convolutions are
Y2IN]= x(n) @hin) Wﬁ added
]l ]
o T :LIT[IJJL"L -
i y[n]=>" yuln—mL]
m=0
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Overlap-Save Method

It is possible to implement the linear convolution
also by performing circular convolutions of length
shorter than (M+L-1)

In this case, it is necessary to segment the original
sequence x[n] is into overlapping blocks x.[n],

The terms of the circular convolution of h[n] with
X,[n] that correspond to the terms obtained by a
linear convolution of h[n] and x.[n]

The other, incorrect, terms of the circular
convolution are thrown away
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Overlap-Save Method
h i i i  Original sequence,
X[n], of unknown

e il
) .,atJJJJL.H ll“:lullar ZELI ;u“lullul[ll length

o"’““LmH"” | i
| dl | | * Overlapping length-N
| Wt §§ | segments of x_[n]
ol lufu;“srﬂ IJL ‘  Circular convolution is
l“ ;’5 i implemented with
= length N
. ””h!n:q Ni—1n
| ll]“lllll
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Overlap-Save Method

y(')(n) |
f | « The length-N
%fﬂnm N circular convolutions
| Sl Mi
; . of length-M impulse
| Yy n) response, h[n], and

* The incorrect M-1
first terms in each

N-1 circular convolution
NIV are rejected
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Summary

 The discrete Fourier transform, DFT, of a finite-
length sequence was discussed

* The length of the transform coefficient sequence,
l.e., the length of the DFT, is the same as the
length of the discrete-time sequence

 The DFT is widely used in a number of digital
signal processing applications
* |[n practice, the DFT can be efficiently

implemented using the Fast Fourier Transform
(FFT) algorithm
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