FYSIIKAN MATEMAATTISET MENETELMÄT FYSP111, M1: Derivointi ja integrointi

Luentomateriaali, k. 2012

Markku Kataja

1: JOHDANTO

Reaaliluvut, koordinaatistot, yhtälöt, funktiot

Kurssikirjan luku P. 'Preliminaries', osin luku 3

vauhti,
$T=298.13 \mathrm{~K}, p=101.3 \mathrm{kPa}, u=80 \mathrm{~km} / \mathrm{h}$
Reaaliluvut \mathbb{R} sisältävät:
-Luonnolliset luvut $\mathbb{N}=1,2,3, \ldots$,
-Kokonaisluvut $\mathbb{Z}=\ldots-2,-1,0,1,2, \ldots$
-Rationaaliluvut $\mathbb{Q}=\left\{\left.\frac{n}{m} \right\rvert\, n, m \in \mathbb{Z}, m \neq 0\right\}$, esim. $\frac{1}{2},-\frac{152}{21}, \ldots$
Siis: $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$
Reaaliluvut, jotka eivät ole rationaalilukuja, ovat irrationaalilukuja $(\mathbb{I R})$, esim. $\sqrt{2}, \pi, \ldots$

Reaaliakselin väli on $\mathbb{R}: n$ osajoukko joka:

 -sisältää vähintään kaksi pistettä (reaalilukua) -jos luvut a ja b kuuluvat ko. osajoukkoon ja $a<b$, niin jokainen luku x, jolle $a<x<b$ kuuluu siihen.Välin päätepiste voi kuulua ko. väliin tai olla sen ulkopuolella. Puhutaan avoimesta, suljetusta ja puoliavoimesta välistä. Merk: suljettu väli $[a, b]$, avoin väli (a, b) ja puoliavoimet välit $[a, b)$ (vasemmalta suljettu, oikelta avoin väli) ja (b, a] (vasemmalta avoin, oikealta suljettu väli). Huom: muunkinlaisia merkintätapoja käytetään.

that a
(a) terminating, inat 15 , encing win an innnile sirngg or zeros, ror example, $3 / 4=0.750000 \ldots$, or
(b) repeating, that is, ending with a string of digits that repeats over and over, for example,
Real numbers that are not rational are called irrational numbers.
subtracted, multiplied, and civided (exceptbero) to produce more real numbers and hat the usual rules of arithmetic are valid.
The order properties of the real numbers refer to the order in which the numbers appear on the real line. If x lies to the left of y, then we say that " x is less than y " or
" y is greater than x." These statements are written symbolically as $x<y$ and $y>x$, y is greater than x. These statements are writen symbolically as $x<y$ and $y>x$, properties of the real numbers are summarized in the following rules for inequalities:

EXAMPLE 1 Show that each of the numbers (a) $1.323232 \cdots=1 . \overline{32}$ and EXAMPE (b) $0.3405405405 \ldots=0.3 \overline{4405}$ is a rational number by expressing it as a quotient of two integers.
Solution
(a) Let $x=1.323232 \ldots$ Then $x-1=0.323232 \ldots$ and

Ääretön (merk. ∞):
Merkintä $x \rightarrow \infty$ tarkoittaa, että luku x kasvaa rajatta, ts. sitä voidaan pitää suurempana kuin mikä tahansa annettu reaaliluku. Samoin $x \rightarrow-\infty$ tarkoittaa, että luku x vähenee rajatta, ts. sitä voidaan pitää pienempänä kuin mikä tahansa annettu reaaliluku.
Huom: vaikka ∞ ei itse ole reaaliluku, merkitään usein esim. $[a, \infty)$ tarkoittaen (puoli)ääretöntä väliä $\{x \mid x \in \mathbb{R}, x \geq a\}$. Väli $(-\infty, \infty)=\mathbb{R}$.

(b) repeating, that is, ending with a string of digits that repeats over and over, for ex-
ample, $23 / 11=2.090909 \ldots=2.09$. (The bar indicates the pattern of repeating digits.)
Real numbers that are not rational are called irrational numbers.

How do we know that $\sqrt{2}$ is an irrational number? Suppose, to the contrary, that $\sqrt{2}-\overline{\text { is rational }}$ Then $\sqrt{2}=m / n$, where m and n are integers and $n \neq 0$. We can assume that the fraction m / n has been "reduced to lowest terms"; any common factors have been cancelled out. Now $m^{2} / n^{2}=2$ so $m^{2}=2 n^{2}$, which is an even integer. Hence m must also be even. (The square of an odd integer is always odd.) Since m is even, we can write $m=2 k$, where k is an integer. Thus $4 k^{2}=2 n^{2}$ anc $n^{2}=2 k^{2}$, which is even. Thus n is also even. This contradicts the assumption that $\sqrt{2}$ could be written as a fraction m / n in lowest terms; m and n cannot both be even. Accordingly, there can be no rational number whose square is 2

The Absolute Value

The absolute value, or magnitude, of a number x, denoted $|x|$ (read "the absolute value of $x^{\prime \prime}$), is defined by the formula

```
|x|={ll}\begin{array}{ll}{x}&{\mathrm{ if }x\geq0}\\{-x}&{\mathrm{ if }x<0}
```

The vertical lines in the symbol $|x|$ are called absolute value bars.

EXAMPLE $6 \quad|3|=3, \quad|0|=0$,

Note that $|x| \geq 0$ for every real number x, a find it confusing to say that $|x|=-x$ whe is positive in that case. The symbol \sqrt{a} of a, so an alternative definition of $|x|$ is $\mid x$ Geometrically, $|x|$ represents the (non line. More generally, $|x-y|$ represents the x and y on the real line, since this distance 0 (see Figure P.6)

igure 9

$\left\lvert\, \begin{aligned} & \text { igure } \\ & x-y \mid=\text { distance from } x \text { to } y\end{aligned}\right.$

Reaaliluvun itseisarvo (absolute value) | •

$$
|x|= \begin{cases}x & ; x \geq 0 \\ -x & ; x<0\end{cases}
$$

Itseisarvon ominaisuuksia:

$$
\begin{aligned}
|-x| & =|x| \\
|x y| & =|x||y| \\
\left|\frac{x}{y}\right| & =\frac{|x|}{|y|} \\
|x \pm y| & \leq|x|+|y| \quad \text { (kolmioepäyhtälö) }
\end{aligned}
$$

$|a \pm b|^{2}=(a \pm b)^{2}=a^{2} \pm 2 a b+b^{2}$

$$
\leq|a|^{2}+2|a||b|+|b|^{2}=(|a|+|b|)^{2},
$$

and taking the (positive) square roots of both sides we obtain $|a \pm b| \leq|a|+|b|$. This result is called the "triangle inequality" because it follows from the geometric fact that the length of any side of a triangle cannot exceed the sum of the lengths of the other two sides. For instance, if we regard the points $0, a$, and b on the number line as the vertices of a degenerate "triangle," then the sides of the triangle have lengths $|a|,|b|$, and $|a-b|$. The triangle is degenerate since all three of its vertices lie on a straig
line.

Equations and Inequalities Involving Absolute Values

The equation $|x|=D$ (where $D>0$) has two solutions, $x=D$ and $x=-D$ the two points on the real line that lie at distance D from the origin. Equations and inequalities involving absolute values can be solved algebraically by breaking them into cases according to the definition of absolute value, but often they can also be solved $|x-a|<D$ eometrically by the the dist x so x in $a-D$ and $a+D$. (Or equivalently, a must lie between $x-D$ and $x+D$) If D is

$$
|x-y|= \begin{cases}x-y, & \text { if } x \geq y \\ y-x, & \text { if } x<y .\end{cases}
$$

The first two of these properties can be che
of a or b is either positive or negative. Th because $\pm 2 a b \leq|2 a b|=2|a||b|$. Therefore, we have Properties of absolute values

1. $|-a|=|a|$. A number and its ne 2. $|a b|=|a||b|$ and $\left|\frac{a}{b}\right|=\frac{|a|}{|b|}$. The $=$ of two numbers is the product (or 3. $|a \pm b| \leq|a|+|b|$ (the triangle sum of or difference between num their absolute values.

$$
|3 x-2|=\left|3\left(x-\frac{2}{3}\right)\right|=3\left|x-\frac{2}{3}\right|
$$

Thus the given inequality says that

Figure P. 7 The solution set for
Example 7(b)

$$
3\left|x-\frac{2}{3}\right| \leq 1 \quad \text { or } \quad\left|x-\frac{2}{3}\right| \leq \frac{1}{3} .
$$

Funktion kuvaaja.

Rajoitutaan seuraavassa yhden reaalimuuttujan reaaliarvoisiin funktioihin $f: D \rightarrow S ; D \subset \mathbb{R}, S \subset \mathbb{R}$.

Tulkitaan kuvaus seuraavaksi siten, että lähtöjoukkona on tason karteesisen koordinaatiston x-akseli ja maalijoukkona sen y-akseli. Funktion f kuvaaja on pistejoukko $\{(x, y) \mid x, y \in \mathbb{R}, y=f(x)\}$


```
Migure P.49 The circle 
```

EXAMP Solution It
graph. To see graph. To se
remainder of remainder of
$2-x$
$x-1$

Thus, the gra unit. See Fig

$\frac{\text { unit. See Fig }}{\text { Not ever }}$
Not ever
only one valu
of a function only one valu
of a function
vertical line x vertical line x
$x^{2}+y^{2}=1$ intersect it tw $y=\sqrt{1}$
which which are, re DEFINITION

Funktion symmetrioista.
 Funktion symmetrioista.

Funktio $f: \mathbb{R} \rightarrow \mathbb{R}$ on

- Symmetrinen eli parillinen jos $f(-x)=f(x)$
- Antisymmetrinen eli pariton jos $f(-x)=-f(x)$

Parillisen funktion kuvaaja on peilaussymmetrinen y-akselin suhteen.

Even and 0 It often happe simplest kind

Even and

 Suppose than even fu an even fu

Funktiolla voi olla myös muita symmetrioita, esim peilaussymmetria mv. suoran tai pisteen suhteen. Huom: Parittoman funktion kuvaaja on symmetrinen origon suhteen.

Jaksollinen funktio.

Funktio $f: \mathbb{R} \rightarrow \mathbb{R}$ on jaksollinen, jos on olemassa luku λ jolle $f(x+\lambda)=f(x)$ kaikille x :n arvoille. Funktion jakso on pienin positiivinen luku λ, joka toteuttaa tämän ehdon.

Huom: jos y.o. jaksollisuusehto pätee luvulle λ, niin se pätee myös jokaiselle luvulle $n \lambda, n \in \mathbb{Z}$. of odd functions are odd. For example, $f(x)=3 x^{4}-5 x^{2}-1$ is even, since it is the sum of three even functions: $3 x^{4},-5 x^{2}$, and $-1=-x^{0}$. Similarly, $4 x^{3}-(2 / x)$ is an odd function. The function $g(x)=x^{2}-2 x$ is the sum of an even function and an odd function and is itself neither even nor odd.

EXAMPLE 9 Describe and sketch the graph of $y=\sqrt{2-x}-3$.
Solution The graph of $y=\sqrt{2-x}$ is the reflection of the graph of $y=\sqrt{x}$
and uses $g(x)=0$ in the plot. This seems to happen between about -0.5×10^{-16} and 0.8×10^{-16} (the coloured horizontal line). As we move further away from the origin, Maple can tell the difference between $1+x$ and 1 , but loses most of th significant figures in the representation of x when it adds 1 , and these remain lost whe it subtracts I again. Thus the numerator remains constant over short intervals while the denominator increases as x moves away from 0 . In those intervals the fraction behave like constant $/ x$ so the arcs are hyperbolas, sloping downward away from the origin The effect diminishes the farther x moves away from 0 , as more of its significant figure are retained by Maple. It should be noted that the reason we used the absolute valu $1+x$ instead of $1+x$ is that this forced Mapie to add the x to the 1 befor would have simplified it algebrally an obtained $g(x)=1$ before using any values of x for plotting.)

In later chapters we will encounter more such strange behaviour (which we call
In later chapters we will encounter more such strange behaviour (which we cal numerical monsters) in the context of calculator and computer calculations with
floating point (i.e. real) numbers. They are a necessary consequence of the limitations floating point (i.e. real) numbers. They are a necessary consequence of the limitations
of such hardware and software, and are not restricted to Maple, though they may show up somewhat differently with other software. It is necessary to be aware of how calculators and computers do arithmetic in order to be able to use them effectively without falling into errors that you do not recognize as such.

One final comment about Figure P.55: the graph of $y=g(x)$ was plotted as individual points, rather than a line as was $y=1$, in order to make the jumps betwee consecutive arcs more obvious. Had we omitted the style=[point, line] optio in the plot command, the default line style would have been used for both graphs and the arcs in the graph of g would have been connected with vertical line segments. Note how the command called for the plotting of two different functions by listing then within square brackets, and how the corresponding styles were correspondingly listed

EXERCISES P. 4

In Exercises 1-6, find the domain and range of each function

1. $f(x)=1+x^{2}$
2. $f(x)=1-\sqrt{x}$
3. $G(x)=\sqrt{8-2 x}$
4. $F(x)=1 /(x-1)$
5. $h(t)=\frac{t}{\sqrt{2-t}}$
6. $g(x)=\frac{1}{1-\sqrt{x-2}}$
7. Which of the graphs in Figure P. 56 are graphs of functions $y=f(x)$? Why?

Figure $P .57$
8. Figure P. 57 shows the graphs of the functions: (i) $x-x^{4}$ Figure P. 5 shows the graphs of the functions: (i) $x-x^{4}$,
(ii) $x^{3}-x^{4}$, (iii) $x(1-x)^{2}$, (iv) $x^{2}-x^{3}$. Which graph orresponds to which function?
In Exercises 9-10, sketch the graph of the function f by first making a table of values of $f(x)$ at $x=0, x= \pm 1 / 2, x= \pm 1$, $x= \pm 3 / 2$, and $x= \pm 2$.
9. $f(x)=x^{4}$
10. $f(x)=x^{2 / 3}$

In Exercises 11-22, what (if any) symmetry does the graph of possess? In particular, is f even or odd?
11. $f(x)=x^{2}+1 \quad$ 12. $f(x)=x^{3}+x$
13. $f(x)=\frac{x}{x^{2}-1}$
14. $f(x)=\frac{1}{x^{2}-1}$
15. $f(x)=\frac{1}{x-2}$
16. $f(x)=\frac{1}{x+4}$
17. $f(x)=x^{2}-6 x$
18. $f(x)=x^{3}-2$
19. $f(x)=\left|x^{3}\right|$
20. $f(x)=|x+1|$
21. $f(x)=\sqrt{2 x}$
22. $f(x)=\sqrt{(x-1)^{2}}$

Sketch the graphs of the functions in Exercises 23-38.
3. $f(x)=-x^{2}$
24. $f(x)=1-x^{2}$
25. $f(x)=(x-1)^{2}$
26. $f(x)=(x-1)^{2}+1$
27. $f(x)=1-x^{3}$
28. $f(x)=(x+2)^{3}$
29. $f(x)=\sqrt{x}+1$
30. $f(x)=\sqrt{x+1}$
31. $f(x)=-|x|$
32. $f(x)=|x|-1$
33. $f(x)=|x-2|$
34. $f(x)=1+|x-2|$
35. $f(x)=\frac{2}{x+2}$
36. $f(x)=\frac{1}{2-x}$
37. $f(x)=\frac{x}{x+1}$
38. $f(x)=\frac{x}{1-x}$

In Exercises $39-46, f$ refers to the function with domain $[0,2]$ and range $[0,1]$, whose graph is shown in Figure P.58. Sketch the raphs of the indicated functions and specify their domains and
39. $f(x)+2$
40. $f(x)-1$
41. $f(x+2)$
42. $f(x-1)$
43. $-f(x)$
44. $f(-x)$
45. $f(4-x)$
46. $1-f(1-x)$

Figure P. 58
It is often quite difficult to determine the range of a function exactly. In Exercises 47-48, use a graphing utility (calculator or computer) to graph the function f, and by zooming in on the graph determine the range of f with accuracy of 2 decimal places.
f8 47. $f(x)=\frac{x+2}{x^{2}+2 x+3}$
옻 48. $f(x)=\frac{x-1}{x^{2}+x}$
In Exercises 49-52, use a graphing utility to plot the graph of the given function. Examine the graph (zooming in or out as necessary) for symmetries. About what lines and/or points are the graphs symmetric? Try to verify your conclusions algebraically
49. $f(x)=x^{4}-6 x^{3}+9 x^{2}-1$
50. $f(x)=\frac{3-2 x+x^{2}}{2-2 x+x^{2}}$

28 51. $f(x)=\frac{x-1}{x-2}$ 른 52. $f(x)=\frac{2 x^{2}+3 x}{x^{2}+4 x+5}$
53. What function $f(x)$, defined on the real line \mathbb{R}, is both even and odd?
P. 5 Combining Functions to Make New Functions

Functions can be combined in a variety of ways to produce new functions.
We begin by examining algebraic means of combining functions, that is, addition, subtraction, multiplication, and division.

Sums, Differences, Products, Quotients, and Multiples
Like numbers, functions can be added, subtracted, multiplied, and divided (except Like numbers, functions can be added, subtracted, multion
where the denominator is zero) to produce new functions.

DEFINITION
If f and g are functions, then for every x that belongs to the domains of both f and g we define functions $f+g, f-g, f g$, and f / g by the formulas:

$$
\begin{aligned}
& (f+g)(x)=f(x)+g(x) \\
& (f-g)(x)=f(x)-g(x)
\end{aligned}
$$

$$
(f g)(x)=f(x) g(x)
$$

$$
\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}, \quad \text { where } g(x) \neq 0 \text {. }
$$

Yhdistetty funktio (Composite function).

Olkoon $f: \mathbb{R} \rightarrow \mathbb{R}$ ja $g: \mathbb{R} \rightarrow \mathbb{R}$ funktioita. Määritellään:

$$
f \circ g(x)=f(g(x))
$$

Näin määritelty kuvaus on funktio $f \circ g: \mathbb{R} \rightarrow \mathbb{R}$, ja sitä nimitetään $f: n$ ja g :n yhdistetyksi funktioksi. Funktiota f kutsutaan yhdistetun funktion ulkofunktioksi ja funktiota g sen sisäfunktioksi.
Esim: $f(x)=x-1, g(x)=x^{2}$ silloin:

$$
\begin{aligned}
& f \circ g(x)=x^{2}-1 \\
& g \circ f(x)=(x-1)^{2}=x^{2}-2 x+1 \\
& g \circ g(x)=\left(x^{2}\right)^{2}=x^{4}
\end{aligned}
$$

| $f+g$ $(f+g)(x)=f(x)+g(x)=\sqrt{x}+\sqrt{1-x}$ $[0,1]$
 $f-g$ $(f-g)(x)=f(x)-g(x)=\sqrt{x}-\sqrt{1-x}$ $[0,1]$
 $f g$ $(f g)(x)=f(x) g(x)=\sqrt{x(1-x)}$ $[0,1]$
 f / g $\frac{f}{g}(x)=\frac{f(x)}{g(x)}=\sqrt{\frac{x}{1-x}}$ $[0,1)$
 g / f $\frac{g}{f}(x)=\frac{g(x)}{f(x)}=\sqrt{\frac{1-x}{x}}$ $(0,1]$ | is defined for all real x but belongs to the domain of f only if $x+1 \geq 0, ~ t h a t ~ i s, ~ i f ~$
 $x \geq-1$. |
| :---: | :---: | :---: |

Figure P. 61 The Heaviside function

Figure P. 62 The signum function

Because the resulting function, x, is defined for all real x, we might be tempted to say that the domain of $G \circ G$ is \mathbb{R}. This is wrong! To belong to the domain of $G \circ G, x$ must satisfy two conditions:
(i) x must belong to the domain of G, and
(ii) $G(x)$ must belong to the domain of G.

The domain of G consists of all real numbers except $x=-1$. If we exclude

 main of G of $G \circ G$

Funktion määrittelyä ei aina voida tehdä yhdellä ainoalla matemaattisella s.amions lausekkeella, vaan määrittely on tehtävä erikseen kahdelle tai useammalle \mathbb{R} :n osavälille. Esimerkkinä jo aiemmin määritelty itseisarvofunktio $f(x)=$ $|x|$ (ks. s. 8). Toinen yleinen esimerkki on ns. askel- 1. porrasfunktio (kutsutaan myös Heavisiden funktioksi).

$$
H(x)=\left\{\begin{array}{l}
1 ; x \geq 0 \tag{1}\\
0 ; x<0
\end{array}\right.
$$

whether x is positive or negative. Since 0 is neither positive nor negative, sgn (0) is

$$
\begin{aligned}
& \text { EXAMPLE } 8 \text { The function } \\
& f(x)= \begin{cases}(x+1)^{2} & \text { if } x<-1, \\
-x & \text { if }-1 \leq x<1, \\
\sqrt{x-1} & \text { if } x \geq 1,\end{cases}
\end{aligned}
$$

is defined on the whole real line but has values given by three different formulas depending on the position of x. Its graph is shown in Figure P.63(a). (b) The least integer function $\lceil x\rceil$

(a)

EXAMPLE least integer

is given in Fig
example, the c
part of an hou

EXERCISES P. 5

In Exercises $1-2$, find the domains of the functions $f+g, f$ $f g, f / g$, and g / f, and give formulas for their values. 1. $f(x)=x, \quad g(x)=\sqrt{x-1}$
2. $f(x)=\sqrt{1-x}, \quad g(x)=\sqrt{1+x}$

Sketch the graphs of the functions in Exercises $3-6$ by comb the graphs of simpler functions from which they are built up. 3. $x-x^{2}$
5. $x+|x| \quad$ 6. $|x|+|x-2|$
7. If $f(x)=x+5$ and $g(x)=x^{2}-3$, find the following: $\begin{array}{ll}\text { (a) } f \circ g(0) & \text { (b) } g(f(0)) \\ \text { (c) } f(g(x)) & \text { (d) } g \circ f(x)\end{array}$ (c) $f(g(x)) \quad$ (d) $g \circ f(x)$ $\begin{array}{ll}\text { (e) } f \circ f(-5) & \text { (f) } g(g(2))\end{array}$ In Exercises $8-10$, construct the following composite functio and specify the domain of each
$\begin{array}{ll}\text { (a) } f \circ f(x) & \text { (b) } f \circ g(x)\end{array}$
$\begin{array}{ll}\text { (c) } g \circ f(x) & \text { (d) } g \circ g(x)\end{array}$
8. $f(x)=2 / x, \quad g(x)=x /(1-x)$
9. $f(x)=1 /(1-x), \quad g(x)=\sqrt{x-1}$
10. $f(x)=(x+1) /(x-1), \quad g(x)=\operatorname{sgn}(x)$

Find the missing entries in Table 4 (Exercises 11-16)
Table 4.

	$f(x)$	$g(x)$	$f \circ g(x)$
11.	x^{2}	$x+1$	
12.		$x+4$	x
13.	\sqrt{x}		$\|x\|$
14.		$x^{1 / 3}$	$2 x+3$
15.	$(x+1) / x$		x
16.		$x-1$	$1 / x^{2}$

17. Use a graphing utility to examine in order the graphs of functions
$\begin{array}{ll}y=\sqrt{x}, & y=2+\sqrt{x}, \\ y=2+\sqrt{3+x}, & y=1 /(2+\sqrt{3+x} .\end{array}$
Describe the effect
function at each stage.
18. Repeat the previous exercise for the functions
$y=2 x, \quad y=2 x-1, \quad y=1-2 x$

$$
y=\sqrt{1-2 x}, \quad y=\frac{1}{\sqrt{1-2 x}}, \quad y=\frac{1}{\sqrt{1-2 x}}-
$$

Potenssifunktiot ja polynomit.

Potenssifunktio potenssille $n \in \mathbb{N}$ (yleistys mv. potenssiin myöhemmin):

$$
\begin{equation*}
x^{n}=x \cdot x \cdot \ldots \cdot x \quad(n \text { tekijää }) \tag{1}
\end{equation*}
$$

Polynomi(funktio) P muodostetaan potenssifunktioiden avulla summana

$$
\begin{equation*}
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{2} x^{2}+a_{1} x+a_{0}, \tag{2}
\end{equation*}
$$

missä $n \in \mathbb{N}$ ja polynomin kertoimet $a_{i} \in \mathbb{R} ; i=0, \ldots, n$. Korkein potenssi n on polynomin aste (merk. $n=\operatorname{deg}(P)$). Huom: n :nnen asteen polynomille $a_{n} \neq 0$. Sensijaan kertoimet $a_{i} ; i=0, \ldots, n-1$ voivat saada arvon 0 .

Erikoistapauksia:
0 . asteen polynomi on vakio (esim. $P(x)=1.5$)

1. asteen polynomin kuvaaja on suora (esim. $P(x)=-2 x+1$.)
2. asteen polynomin kuvaaja on parabeli (esim. $P(x)=x^{2}+1$)
\qquad Muttiply:ng two polynomials of degrees m and n produces a product polynomial of degree $m+n$. For instance, for the product
$f(x)= \begin{cases}\lfloor x\rfloor & \text { if } x \geq 0 \\ {[x\rangle} & \text { if } x<0 .\end{cases}$

Polynomien kertolasku

Olkoon P astetta n oleva polynomi, $P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}$ $(P \neq 0)$ ja Q astetta m oleva polynomi, $Q(x)=b_{m} x^{m}+b_{m-1} x^{m-1}+\ldots+$ $b_{1} x+b_{0}(Q \neq 0)$. Silloin tulo $P Q$ on astetta $n+m$ oleva polynomi, jolle

$$
\begin{aligned}
P Q(x)= & \left(a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}\right)\left(b_{m} x^{m}+b_{m-1} x^{m-1}+\ldots+b_{1} x+b_{0}\right) \\
= & a_{n} b_{m} x^{n+m}+\left(a_{n} b_{m-1}+a_{n-1} b_{m}\right) x^{n+m-1}+ \\
& \left(a_{n} b_{m-2}+a_{n-1} b_{n-1}+a_{n-2} b_{m}\right) x^{n+m-2}+\ldots+\left(a_{1} b_{0}+a_{0} b_{1}\right) x+a_{0} b_{0} .
\end{aligned}
$$

Polynomien kertolasku suoritetaan siis noudattamalla normaaleja reaalilukujen osittelulakien mukaisia sulkulausekkeiden kertolaskusääntöjä.
(Osittelulait: $a(b+c)=a b+a c$ ja $(a+b) c=a c+b c$.)
Esimerkki: Olkoon $P(x)=2 x^{2}+3 x-4$ ja $Q(x)=x+2$. Silloin,

$$
\begin{aligned}
P Q(x) & =\left(2 x^{2}+3 x-4\right)(x+2) \\
& =2 \cdot 1 x^{3}+2 \cdot 2 x^{2}+3 \cdot 1 x^{2}+3 \cdot 2 x-4 \cdot 1 x-4 \cdot 2 \\
& =2 x^{3}+(4+3) x^{2}+(6-4) x-8 \\
& =2 x^{3}+7 x^{2}+2 x-8
\end{aligned}
$$

Rationaalifunktiot

Olkoon P_{n} ja P_{m} polynomeja, joiden asteet ovat n ja m. Tyyppiä

$$
\mathrm{R}(x)=\frac{P_{n}(x)}{P_{m}(x)}
$$

olevaa osamääräfunktiota kutsutaan rationaalifunktioksi. Se on määritelty kaikilla reaaliluvuilla x poislukien ne x :n arvot joilla $P_{m}(x)=0$.

Jos $m \leq n$ voidaan rationaalifunktio sieventää muotoon

$$
\frac{P_{n}(x)}{P_{m}(x)}=Q_{n-m}(x)+\frac{R_{k}(x)}{P_{m}(x)}
$$

suorittamalla polynomien jakolasku. Tässä Q_{n-m} on astetta $n-m$ oleva (osamäärä)polynomi ja R_{k} on jakojäännös(polynomi), jonka aste $k<m$. Jos R_{k} on nollapolynomi, ts. $R_{k}(x)=0$ kaikilla $x: \mathrm{n}$ arvoilla, sanotaan, että polynomi P_{n} on jaollinen polynomilla P_{m}
from which it follows at once that
$\frac{2 x^{3}-3 x^{2}+3 x+4}{x^{2}+1}=2 x-3+\frac{x+7}{x^{2}+1}$

$(x-u-i v)(x-u+i v)=(x-u)^{2}+v^{2}=x^{2}-2 u x+u^{2}+v^{2}$,

hich is a quadratic polynomial having no real roots. It follows that every rea real (also possibly repeated) quadratic factors having no real zero.

Just as the quotient of two integers is often not an integer but is called a rational number, the quotient of two polynomials is often not a polynomial, but is instead called a rational function.
s a rational function.

Roots, Zeros, and Factors

number r is called a root or zero of the polynomial P if $P(r)=0$. For example $P(x)=x$ makes $P(x)=0$ hat Iterchangeably. It is technically more correct to call a number r satisfying $P(r)=0$ ero of the polynomial function P and a root of the equation $P(x)=0$ and later in this

Polynomin nollakohdat ja jako alemman asteen tekijöihin

Lukua r_{1}, jolle $P\left(r_{1}\right)=0$ kutsutaan polynomin P nollakohdaksi (ja yhtälön $P(x)=0$ juureksi). Oletetaan, että $\operatorname{deg}(P)=n \geq 1$. Merkitään e.o. rationaalifunktion sievennetyssä muodossa $P_{n}=P$ ja valitaan $m=1$ ja $P_{1}(x)=\left(x-r_{1}\right)$. Kertomalla yhtälö puolittain $\left(x-r_{1}\right)$:llä saadaan

$$
P(x)=\left(x-r_{1}\right) Q_{n-1}(x)+R_{0}(x),
$$

missä R_{0} on 0 :nnen asteen polynomi, eli vakio. Jos nyt r_{1} on $P: n$ nollakohta, on oltava $R_{0}=0$. Ts.

$$
P(x)=\left(x-r_{1}\right) Q_{n-1}(x), \quad \text { kun } P\left(r_{1}\right)=0,
$$

ts. polynomi P on jaollinen 1. asteen polynomilla $x-r_{1}$.

If P is a real polynomial having a conmplex root $r_{1}=u+i v$, where u and v are real and $v \neq 0$, then, as asserted above, the complex conjugate of r_{1}, namely, $r_{2}=u-i v$,
will also be a root of P. (Moreover, r_{1} and r_{2} will have the same multiplicity.) Thus, will also be a root of P. (Moreover, r_{1} and r_{2} will have the same multiplicity. oth $x-u-i v$ and $x-u+i v$ are factors of $P(x)$, and so, therefore, is their product
$(x-u-i v)(x-u+i v)=(x-u)^{2}+v^{2}=x^{2}-2 u x+u^{2}+v^{2}$,

Polynomin nollakohdat ja jako alemman asteen tekijöihin (jatkoa)

When we div
integer quotie integer quotie
fraction a / b numerator (th $\frac{7}{3}=2+$ Similarly, if $m>n$, then of a quotient
where the nu has degree k equivalent me

EXAMPLE

Solution M

Jos nyt luku r_{2} on astetta $n-1$ olevan osamääräpolynomin Q_{n-1} nollakohta, voidaan edellä esitetty päättely toistaa $Q_{n-1}: l l e$, jolloin alkuperäinen polynomi P voidaan kirjoittaa muodossa $P(x)=\left(x-r_{1}\right)\left(x-r_{2}\right) Q_{n-2}(x)$, missä $Q_{n-2}(x)$ on astetta $n-2$ oleva polynomi. Näin jatkamalla voidaan päätellä, että astetta n olevalla polynomilla on korkeintaan n nollakohtaa, ja että jos luvut $r_{1}, r_{2}, \ldots r_{n}$ ovat nämä nollakohdat, niin polynomi P voidaan kirjoittaa muodossa

$$
\begin{equation*}
P(x)=a_{n}\left(x-r_{1}\right)\left(x-r_{2}\right) \ldots\left(x-r_{n}\right) . \tag{4}
\end{equation*}
$$

HUOM: Voidaan osoittaa, että jokaisella n :nnen asteen polynomilla todellakin on n kpl. nollakohtia, mutta ne eivät välttämättä ole reaalilukuja (vaan kompleksilukuja) ja että ne eivät välttämättä ole keskenään erisuuria. Lisäksi voidaan osoittaa, että jokainen reaalikertoiminen polynomi voidaan jakaa yksikäsitteisesti korkeintaan 2. astetta olevien reaalikertoimisten polynomien tuloksi.

Polynomien nollakohtien määrittäminen

0 . asteen polynomin tapaus on triviaali.

1. asteen polynomilla $P_{1}(x)=A x+B$ on nollakohta $r=-B / A$
2. asteen polynomilla $P_{2}(x)=A x^{2}+B x+C$ on nollakohdat

$$
r_{ \pm}=\frac{1}{2 A}\left(-B \pm \sqrt{B^{2}-4 A C}\right)
$$

jotka ovat joko molemmat reaalisia tai molemmat kompleksisia.
3. asteen polynomilla on joko kolme reaalista nollakohtaa tai yksi reaalinen ja kaksi kompleksista nollakohtaa. Niiden laskemiseksi on olemassa kaava, mutta se on kohtalaisen monimutkainen. Sitä käytetään harvoin eikä sitä esitetä tässä.
4. asteen polynomien nollakohtien ratkaisemiseksi on myös olemassa yleinen menetelmä, mutta se on äärimmäisen monimutkainen eikä sitä juuri käytetä.
Astetta $n \geq 5$ oleville polynomeille on pystytty todistamaan, että yleistä kaavaa nollakohtien löytämiseksi ei ole olemassa.

Korkeamman asteen polynomien nollakohdat voidaan aina löytää numeerisesti (likiarvoina) tai erikoistapauksissa analyyttisesti (esim. etsimällä osa nollakohdista kokeilemalla).

(ii) $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x-h)}{2 h}=f^{\prime}(x)$
b) Show that the existence of the limit in (i) guarantees tha f is differentiable at x.
(c) Show that the existence of the limit in (ii) does not guarantee that f is differentiable at x. Hint: Consider the function $f(x)=|x|$ at $x=0$.
9. Show that there is a line through $(a, 0)$ that is tangent to the curve $y=x^{3}$ at $x=3 a / 2$. If a line through $(a, 0)$ that is tangent to
is an arbitrary point, what is the mat is an arbitrary point, what is the mat
through $\left(x_{0}, y_{0}\right)$ that can be tangent to number?
0. Make a sketch showing that there are of which is tangent to both of the pary
and $y=-x^{2}+4 x-1$. Find equatic
11. Show that if $b>1 / 2$, there are thr $(0, b)$, each of which is normal to many such lines are there if $b=1 / 2$
2. (Distance from a point to a cury curve $y=x^{2}$ that is closest to the poi
from $(3,0)$ to the closest point Q on the parabola at Q.
13. (Envelope of a family of lines) of the parameter m, the line $y=m$. the parabola $y=x^{2}$. (The parabola of the family of lines $y=m x-\left(m^{2}\right)$ the family of lines $y=m x+f(m)$
$y=A x^{2}+B x+C$.
O14. (Common tangents) Consider the tions $y=x^{2}$ and $y=A x^{2}+B x+C$
and if $A=1$, then either $B \neq 0$ or equations do represent different para
(a) the two parabolas are tangent to $B^{2}=4 C(A-1)$;
(b) the parabolas have two commor if $A \neq 1$ and $A\left(B^{2}-4 C(A-\right.$ (c) the parabolas have exactly one (d) the $A=1$ and $B \neq 0$, or $A \neq$ $A=1$ and $B=0$, or $A \neq 1$ and Make sketches illustrating each of t 15. Let C be the graph of $y=x^{3}$
(a) Show that if $a \neq 0$, then the ta intersects C at a second point. . (b) Show that th
at $x=a$.
(c) Can any line be tangent to C at more than one point?
(d) Can any line be tangent to the graph of
(d) Can any line be tangent to the graph of
$y=A x^{3}+B x^{2}+C x+D$ at more than one point?

ब16. Let C be the graph of $y=x^{4}-2 x^{2}$ (a) Find all horizontal lines that are tangent to C.
(b) One of the lines found in (a) is tangent to C at two difproperty.
(c) Find an equation of a straight line that is tangent to the
raph of $y=x^{4}-2 x^{2}+x$ at two different points. Can
17. (Double tangents) A line tangent to the quartic (fourth(Double tangents) A line tangent to the quartic (fourth-
degree polynomial) curve C with equation $y=a x^{4}+b x^{3}+$ degree polynomial) curve C with equation $y=a x^{4}+b x^{3}+$
$c x^{2}+d x+e$ at $x=p$ may intersect C at zero, one, or two other points. If it meets C at only one other point $x=q$, it must be tangent to C at that point also, and it is thus a "double must be

Thapter 3
 -.

Algebralliset ja traskendenttiset funktiot

Kokonaislukukertoimisia polynomeja, rationaalifunktioita ja näiden murfunktioiksi.

Kokonaislukukertoimisia polynomeja, rationaaliiunktioita ja naiden mur
tolukupotensseja kutsutaan yhteisellä nimellä algebrallisiksi (alkeis)

Muunlaisia funktioita kutsutaan transkendenttisiksi (tai transsendenttisiksi) funktioiksi. Transkendenttisia alkeisfunktioita ovat:
-Trigonometriset funktiot ja niiden käänteisfunktiot l. arcusfunktiot
-Eksponentti- ja logaritmifunktiot
-Hyperboliset funktiot ja niiden käänteisfunktiot l. areafunktiot
Näistä trigonometriset funktiot on jo käsitelty. Muita transkendenttisia alkeisfunktioita käsitellään lyhyesti seuraavassa tissi) funktioiks, Transkendentisia alkeisfunktioita o at:

Jos funktio $f: \mathbb{R} \rightarrow \mathbb{R}$ on bijektio ja jatkuva (funktion jatkuvuus määritellään tarkemmin myöhemmin), sen kuvaaja $y=f(x)$ on aidosti monotoninen (aidosti kasvava tai vähenevä). Käänteisfunktion f^{-1} kuvaaja $y=f^{-1}(x)$ saadaan tällöin alkuperäisen funktion kuvaajasta peilaamalla se suoran $y=x$ suhteen.

30. If $y_{0}>L$, find the interval on which the given solution of logistic equation is valid. What happens to the solution as approaches the left endpoint of this interval?
31. If $y_{0}<0$, find the interval on which the given solution of logistic equation is valid. What happens to the
. (Modelling an epidemic) The number y of persons infected by a highly contagious virus is modelled by a logistic curve
$y=\frac{L}{1+M e^{-k l}}$.

The Inverse Trigonometric

The six trigon
we did with th we did with th
that the restric The Invers Let us define domain is the FINITION 8 Since its der increasing on range $[-1,1]$

Figure 3.17 The graph of $\operatorname{Sin} x$ forms part of the graph of $\sin x$

Trigonometriset käänteisfunktiot l. arcusfunktiot

Trigonometrisilla funktioilla ei ole käänteisfunktioita koko määrittelyalueissaan. Määritellään uudet funktiot rajoittamalla määrittelyaluetta seuraavasti:

$$
\begin{array}{rlrl}
\operatorname{Sin}(x) & =\sin (x) ; \quad & -\pi / 2 \leq x \leq \pi / 2 \\
\operatorname{Cos}(x) & =\cos (x) ; \quad 0 \leq x \leq \pi \\
\operatorname{Tan}(x) & =\tan (x) ; \quad-\pi / 2 \leq x \leq \pi / 2 \\
\operatorname{Cot}(x) & =\cot (x) ; \quad 0 \leq x \leq \pi
\end{array}
$$

Nämä funktiot ovat bijektioita joten niillä on käänteisfunktiot

$$
\begin{aligned}
\arcsin (x) & ;-1 \leq x \leq 1 \\
\arccos (x) & ;-1 \leq x \leq 1 \\
\arctan (x) & ;-\infty<x<\infty ; \\
\operatorname{arccot}(x) & ;-\infty<x<\infty
\end{aligned}
$$

Käänteisfunktioita merkitään yleisesti myös: $\sin ^{-1}(x), \cos ^{-1}(x)$, jne.
(Lisää: Murray et.al., Mathematical Handbook of Formulas and Tables, Schaum outlines.)

Since we are assuming that the graph $y=f(x)$ has a nonhorizontal tangent ine at any x in (a, b) ，its reflection，the graph $y=f^{-1}(x)$ ，has a nonvertical tangent line at any x in the interval between $f(a)$ and $f(b)$ ．Therefore，f^{-1} is differentiable at any such x ．（See Figure 3．6．）

Let $y=f^{-1}(x)$ ．We want to find $d y / d x$ ．Solve the equation $y=f^{-1}(x)$ for
$x=f(y)$ and differentiate implicitly with respect to x to obtain

$$
1=f^{\prime}(y) \frac{d y}{d x}, \quad \text { so } \quad \frac{d y}{d x}=\frac{1}{f^{\prime}(y)}=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}
$$

Therefore，the slope of the graph of f^{-1} at (x, y) is the reciprocal of the slope of th graph of f at (y, x)（Figure 3．6）and

$$
\frac{d}{d x} f^{-1}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}
$$

In Leibniz notation we have $\left.\frac{d y}{d x}\right|_{x}=\frac{1}{\left.\frac{d x}{d y}\right|_{y=f^{-1}(x)}}$ ．
EXAMPLE 4 Show that $f(x)=x^{3}+x$ is one－to－one
Solution Since $f^{\prime}(x)=3 x^{2}+1>0$ for all real numbers x, f is increasing and therefore one－to－one and invertible．If $y=f^{-1}(x)$ ，the

$$
\begin{aligned}
x=f(y)=y^{3}+y & \Longrightarrow 1=\left(3 y^{2}+1\right) y^{\prime} \\
& \Longrightarrow y^{\prime}=\frac{1}{3 y^{2}+1} .
\end{aligned}
$$

$$
\text { Now } x=f(2)=10 \text { implies } y=f^{-1}(10)=2 \text {. Thus, }
$$

$$
\left(f^{-1}\right)^{\prime}(10)=\left.\frac{1}{3 y^{2}+1}\right|_{y=2}=\frac{1}{13} .
$$

EXERCISES 3.1

Show that the functions f in Exercises $1-12$ are one－to－one，and calculate the inverse functions f^{-1} ．Specify the domains and canges of f and f^{-}
1．$f(x)=x-1$
3．$f(x)=\sqrt{x-1}$
5．$f(x)=x^{3}$
2．$f(x)=2 x-1$
4．$f(x)=-\sqrt{x-1}$
7．$f(x)=x^{2}, \quad x \leq 0$
9．$f(x)=\frac{1}{x+1}$
8．$f(x)=(1-2 x)^{3}$
11．$f(x)=\frac{1-2 x}{1+x}$
10．$f(x)=\frac{x}{1+x}$
12．$f(x)=\frac{x}{\sqrt{x^{2}+1}}$

Calculate the inverses of the given functions in terms of f^{-1} ．
3．$g(x)=f(x)-2$
14．$h(x)=f(2 x)$

15．$k(x)=-3 f(x)$
16．$m(x)=f(x-2)$
17．$p(x)=\frac{1}{1+f(x)}$
18．$q(x)=\frac{f(x)-3}{2}$
19．$r(x)=1-2 f(3-4 x)$
20．$s(x)=\frac{1+f(x)}{1-f(x)}$
In Exercises 21－23，show that the given function is one－to－one and find its inverse．
21．$f(x)= \begin{cases}x^{2}+1 & \text { if } x \geq 0 \\ x+1 & \text { if } x<0\end{cases}$
22．$g(x)= \begin{cases}x^{3} & \text { if } x \geq 0 \\ x^{1 / 3} & \text { if } x<0\end{cases}$
23．$h(x)=x|x|+1$
24．Find $f^{-1}(2)$ if $f(x)=x^{3}+$

25．Find $g^{-1}(1)$ if $g(x)=x^{3}+x-9$
26．Find $h^{-1}(-3)$ if $h(x)=x|x|+1$
27．Assume that the function $f(x)$ satisfies $f^{\prime}(x)=\frac{1}{x}$ and that f is one－to－one．If $y=f^{-1}(x)$ ，show that $d y / d x=y$ ．
28．Find $\left(f^{-1}\right)^{\prime}(x)$ if $f(x)=1+2 x^{3}$
29．Show that $f(x)=\frac{4 x^{3}}{x^{2}+1}$ has an inverse and find $\left(f^{-1}\right)^{\prime}(2)$ ．
G30．Find $\left(f^{-1}\right)^{\prime}(-2)$ if $f(x)=x \sqrt{3+x^{2}}$ ．
31．If $f(x)=x^{2} /(1+\sqrt{x})$ ，find $f^{-1}(2)$ correct to 5 decimal places．
으⿰口口⿰口口 32．If $g(x)=2 x+\sin x$ ，show that g is invertible，and find $g^{-1}(2)$ and $\left(g^{-1}\right)^{\prime}(2)$ correct to 5 decimal places．
Show that $f(x)=x$ sec x is one－to－one on $(-\pi / 2, \pi / 2)$ ． What is the domain of $f^{-1}(x)$ ？Find $\left(f^{-1}\right)^{\prime}(0)$ ．
34．If f and g have respective inverses f^{-1} and g^{-1} ，show that the composite function $f \circ g$ has inverse $(f \circ g)^{-1}=g^{-1} \circ f^{-1}$
35．For what values of the constants a, b ，and c is the function $f(x)=(x-a) /(b x-c)$ self－inverse？
a36．Can an even function be self－inverse？an odd function？
337．In this section it was claimed that an increasing（or decreasing）function defined on a single interval is necessarily one－to－one．Is the converse of this statement true？Explain．
33．Repeat Exercise 37 with the added assumption that f is continuous on the interval where it is defined．
coner

To begin we review exponential and logarithmic functions as you may have encountered them in your previous mathematical studies．In the following sections we will approach these functions from a different point of view and learn how to find their derivatives．

Exponentials

An exponential function is a function of the form $f(x)=a^{x}$ ，where the base a is a positive constant and the exponent x is the variable．Do not confuse such functions with power functions such as $f(x)=x^{a}$ ，where the base is variable and the exponent is constant．The exponential function a^{x} can be defined for integer and rational exponents x as follows：

$a^{0}=1$
$\begin{aligned} a^{0} & =1 \\ a^{n} & =\underbrace{a \cdot a \cdot a \cdots a} \quad \text { if } n=1,2,3,\end{aligned}$
Määr: Joukon $I \subset \mathbb{R}$ yläraja on luku $m \in \mathbb{R}$, jolle pätee: $x \leq m \quad \forall x \in I$.
(Huom: kaikilla $\mathbb{R}: n$ osajoukoilla ei ole ylärajaa.)
Määr: Joukko $I \subset \mathbb{R}$ on ylhäältä rajoitettu, jos sillä on (ainakin yksi) yläraja.

Määr: Ylhäältä rajoitetun joukon $I \subset \mathbb{R}$ pienin yläraja l. supremum, merk. $\sup (I)$, on luku, joka on joukon I yläraja ja jolle pätee $\sup (I) \leq m$ kaikille joukon I ylärajoille m.

Reaalilukujen täydellisyysaksiooma:

Jokaisella ylhäältä rajoitetulla joukolla $I \subset \mathbb{R}$ on olemassa $\sup (I) \in \mathbb{R}$.

```
If }x>0,y>0,a>0,b>0,a\not=1, and b\not=1, then
\[
\begin{array}{ll}
\text { (i) } \log _{a} 1=0 & \text { (ii) } \log _{a}(x y)=\log _{a} x+\log _{a} y \\
\text { (iii) } \log _{a}\left(\frac{1}{x}\right)=-\log _{a} x & \text { (iv) } \log _{a}\left(\frac{x}{y}\right)=\log _{a} x-\log _{a} y \\
\text { (v) } \log _{a}\left(x^{y}\right)=y \log _{a} x & \text { (vi) } \log _{a} x=\frac{\log _{b} x}{\log _{b} a}
\end{array}
\]
```


Eksponenttifunktion perusominaisuuksia

$$
\begin{aligned}
a^{0} & =1 \\
a^{-x} & =1 / a^{x} \\
a^{x+y} & =a^{x} a^{y} \\
a^{x-y} & =a^{x} / a^{y} \\
\left(a^{x}\right)^{y} & =a^{x y} \\
(a b)^{x} & =a^{x} b^{x}
\end{aligned}
$$

Huom: eksponenttifunktioita kantaluvulle $a<0$ ei voida määritellä reaaliluvuille. Sen sijaan kompleksilukujen joukossa tämäkin tapaus voidaan käsitellä.

Neperin luku e

Ns. Neperin luku, jota yleisesti merkitään symbolilla e määritellään lausekkeen $\left(1+\frac{1}{r}\right)^{r}$ arvona rajalla $r \rightarrow \infty$, ts.

$$
e=\lim _{r \rightarrow \infty}\left(1+\frac{1}{r}\right)^{r}
$$

(Merkintä " $\lim _{r \rightarrow \infty}$ " luetaan: "raja-arvo, kun r lähestyy ääretöntä. Rajaarvoista puhutaan lisää jäljempänä).
Voidaan osoittaa, että ko. raja-arvo todellakin on olemassa ja että se on irrationaaliluku $e \approx 2.71828 \ldots$. Syy Neperin luvun määritelmän muotoon selviää jäljempänä derivaattojen käsittelyn yhteydessä.

Kuten myöhemmin opitaan, eksponenttifunktiolla jonka kantalukuna on e, siis funktiolla $f(x)=e^{x}$, on se tärkeä ominaisuus, että sen derivaattafunktio on funktio itse, siis $\frac{d}{d x} e^{x}=e^{x}$. Tästä ainutlaatuisesta ominaisuudesta johtuu, että ko. funktio on erityisen tärkeä funktioanalyysin kannalta.

Luonnollinen logaritmi

 Sitä kutsutaan luonnolliseksi logaritmiksi ja merkitään $\ln (x)$.

Huom: Yleisen logaritmin kantaluvun vaihtokaavan mukaan voidaan mv. a-kantainen logaritmi kirjoittaa luonnollisen logaritmin avulla: $\log _{a} x=\ln x / \ln a$. Samoin voidaan a-kantainen eksponenttifunktio kirjoittaa e-kantaisena eksponenttifunktiona: $a^{x}=e^{x \ln a}$. Näin ollen kaikki logaritmi- eksponenttifunktiot voidaan aina lausua funktioiden $\ln x$ ja e^{x} avulla. Yleisen käytännön mukaan, jos puhutaan vain 'logaritmista' tai 'eksponettifunktiosta' määrittelemättä kantalukua, tarkoitetaan useimmiten nimenomaan funktioita $\ln x$ ja e^{x} (logaritmifunktion kohdalla tosin joskus 10 -kantaista tai harvemmin 2 -kantaista logaritmia).

In Exercises 52-55, solve the initial-value problems.
园54. $\left\{\begin{array}{l}y^{\prime}=\frac{1}{\sqrt{1-x^{2}}} \\ y(1 / 2)=1\end{array}\right.$ ®55. $\left\{\begin{array}{l}y^{\prime}=\frac{4}{\sqrt{25-x^{2}}} \\ \end{array}\right.$图52. $\left\{\begin{array}{l}y^{\prime}=\frac{1}{1} \\ y(0)=\end{array}\right.$

6 Hyperbolic Functions

DEFINITION
Any function defined on the real line can be an even function and an odd function. (See Ex functions $\cosh x$ and $\sinh x$ are, respectively is the exponential function e^{x}

$$
\begin{aligned}
& \text { The hyperbolic cosine and hyperbolic si } \\
& \text { For any real } x \text { the hyperbolic cosine, cosh } \\
& \text { defined by } \\
& \cosh x=\frac{e^{x}+e^{-x}}{2} \\
& \text { The symbol "sinh" is somewhat hard to } \\
& \begin{array}{l}
\text { "(he symbol "sinh" is somewhat hard to } \\
\text { "shine," and others say "sinch.") Recali }
\end{array} \\
& \text { functions because, for any } t \text {, the point (co } \\
& \left.{ }^{2}+{ }^{2} \text {. }\right) \text { lies an the rectangular hyper } \\
& \cosh ^{2} t-\sinh ^{2} t=1 \text { for any real } t \text {. } \\
& \cosh ^{2} t-\sinh ^{2} t=\left(\frac{e^{t}+e^{-t}}{2}\right)^{2} \\
& =\frac{1}{4}\left(e^{2 t}+2+e^{-2}\right. \\
& =\frac{1}{4}(2+2)=1 \text {. }
\end{aligned}
$$

There is no interpretation of t as an arc 1 case; however, the area of the hyperbolic $x^{2}-y^{2}=1$, and the ray from the origin 8.4) just as is the ar the circle $x^{2}+y^{2}=1$, and the ray from th Observe that, similar to the corresponc

$$
\cosh 0=1 \quad \text { and } \quad \sinh 0=0
$$

and $\cosh x$, like $\cos x$, is an even function, and $\sinh x$, like $\sin x$, is an odd function:

$$
\cosh (-x)=\cosh x, \quad \sinh (-x)=-\sinh x
$$

The graphs of cosh and sinh are shown in Figure 3.27. The graph $y=\cosh x$ is called a catenary. A chain hanging by its ends will assume the shape of a catenary.

Many other properties of the hyperbolic functions resemble those of the corre-

The following addition formulas and double angle formulas can be checked algebraically by using the definition of cosh and sinh and the laws of exponents: sponding circular functions, sometimes with signs changed

