Return m-files before 31.5.2011

Email the solution to :
fysp120(at)gmail.com Subject-line: FNM exercise4

1. Get a copy of hydrogen.m.

Let's solve the radial wavefunction of the Hydrogen atom in matrix form. The differential equation is

$$
-\frac{d^{2}}{d r^{2}} \phi(r)-\frac{2}{r} \phi(r)=E \phi(r),
$$

which after discretization becomes the matrix equation

$$
\left(\frac{1}{h^{2}}\left(\begin{array}{cccccc}
2^{-1} & -1 & 0 & 0 & \cdots & 0 \\
0 & 2 & -1 & 0 & \cdots & 0 \\
0 & -1 & 2 & -1 & \cdots & 0 \\
0 & 0 & \vdots & 0 & \cdots & 0 \\
0 & 0 & 0 & \cdots & 2
\end{array}\right)-\alpha\left(\begin{array}{cccccc}
1 / r_{1} & 0 & 0 & 0 & 0 & \cdots \\
0 & 1 r_{2} & 0 & 0 \\
0 & 0 & 1 r_{3} & 0 & \cdots & \cdots \\
0 \\
0 & 0 & \vdots & 0 & \cdots & 0 \\
0 & 0 & 0 & \cdots & 1 / r_{N}
\end{array}\right)\right)\left(\begin{array}{c}
\phi\left(r_{1}\right) \\
\phi\left(r_{2}\right) \\
\phi\left(r_{3}\right) \\
\vdots \\
\phi\left(r_{N}\right)
\end{array}\right)=E\left(\begin{array}{c}
\phi\left(r_{1}\right) \\
\phi\left(r_{2}\right) \\
\phi\left(r_{3}\right) \\
\vdots \\
\phi\left(r_{N}\right)
\end{array}\right)
$$

The second derivative discretization is in the lecture notes. Here $h=$ $r_{k}-r_{k-1}$ is the step size and for Hydrogen the factor $\alpha=2$. The accuracy of the eigenvalues depends on the discretization r_{1}, \ldots, r_{N}; the exact values are $E=-1 / n^{2}$, where $n=1,2 \ldots$ is the principal quantum number, hence $E=-1,-0.25, \ldots$.
a) Modify hydrogen.m to use sparse matrices, using spdiags and eigs (also gallery may be usefull).
Examine how the potential affects the ground state wave function $\phi_{1}(r)$. Solve $\phi_{1}(r)$ for $\alpha=\{0,0.1, \ldots, 2\}$, that is, from a free particle to full Coulomb potential. Note: it's a good idea to turn all solution eigenvectors on the positive side; i.e. some solutions multiplied with -1 .
b) Compute the expansion of the function

$$
f(r)=r e^{-0.6 r} \sin (r)
$$

in the basis of Hydrogen eigenstates, i.e., compute the coefficients a_{i} in the sum

$$
f(x)=\sum_{i=1}^{N} a_{i} \phi_{i}(r) .
$$

Draw the approximating sum functions in the cases of $1,5,20$ or all N terms in the sum.

HINTS

Filling tridiagonal matrices
Matrix elements can be set in a loop, or using built-in help functions. Check out what matrices these produce:
$\mathrm{N}=4$;
$\mathrm{A}=\operatorname{spdiags}($ ones $(\mathrm{N}, 1),-1, \mathrm{~N}, \mathrm{~N})+\operatorname{spdiags}\left((2: 5)^{\prime}, 0, N, N\right) \ldots$ + spdiags(ones (N, 1), 1, N,N)
full (A)
and
$\mathrm{N}=4$;
$\mathrm{A}=$ gallery ('tridiag', $N, 1,0,1)+\operatorname{spdiags}\left((2: 5)^{\prime}, 0, N, N\right)$
full (A)
Finding a few lowest eigenvalues of a sparse matrix

$$
E=\operatorname{eigs}(A, 3, ' s a ') ; \% 3 \text { lowest eigenvalues of } A
$$

You can get all eigenvalues of a sparse matrix A taking first a full form of it, and using eig:

```
E = eig(full(A)); % E is a vector
```

Getting also eigenvectors, Matlab returns eigenvalues in a diagonal matrix:

```
[V,E] = eigs(A); % E is a diagonal matrix
[V,E] = eig(full(A)) ; % E is a diagonal matrix
E = diag(E) ; % diagonal values to a vector E
```

Finally, the eigenvalues returned by eig or eigs are not necessarily in ascending order. To be sure, sort them yourself:

```
[E,ind] = sort(diag(E)); % if E is a matrix, else sort(E)
V = V(:,ind);
```

Here ind is the sorting index. Now $V(:, 1)$ is the eigenvector corresponding to the lowest eigenvalue.

