Return m-files before 31.5.2011

Email the solution to :

fysp120(at)gmail.com Subject-line: FNM exercise4

1. Get a copy of hydrogen.m.

Let's solve the radial wavefunction of the Hydrogen atom in matrix form. The differential equation is

$$-\frac{d^2}{dr^2}\phi(r) - \frac{2}{r}\phi(r) = E\phi(r),$$

which after discretization becomes the matrix equation

The second derivative discretization is in the lecture notes. Here $h = r_k - r_{k-1}$ is the step size and for Hydrogen the factor $\alpha = 2$. The accuracy of the eigenvalues depends on the discretization r_1, \ldots, r_N ; the exact values are $E = -1/n^2$, where n = 1, 2... is the principal quantum number, hence $E = -1, -0.25, \ldots$

a) Modify hydrogen.m to use sparse matrices, using spdiags and eigs (also gallery may be usefull).

Examine how the potential affects the ground state wave function $\phi_1(r)$. Solve $\phi_1(r)$ for $\alpha = \{0, 0.1, ..., 2\}$, that is, from a free particle to full Coulomb potential. Note: it's a good idea to turn all solution eigenvectors on the positive side; *i.e.* some solutions multiplied with -1.

b) Compute the expansion of the function

$$f(r) = re^{-0.6r}\sin(r)$$

in the basis of Hydrogen eigenstates, *i.e.*, compute the coefficients a_i in the sum

$$f(x) = \sum_{i=1}^{N} a_i \phi_i(r).$$

Draw the approximating sum functions in the cases of 1,5,20 or all N terms in the sum.

CONTINUES ON THE NEXT PAGE!

HINTS

Filling tridiagonal matrices

Matrix elements can be set in a loop, or using built-in help functions. Check out what matrices these produce:

```
N = 4;
A = spdiags(ones(N,1),-1,N,N) + spdiags((2:5)',0,N,N) ...
+ spdiags(ones(N,1),1,N,N)
full(A)
and
N = 4;
A = gallery('tridiag',N,1,0,1) + spdiags((2:5)',0,N,N)
full(A)
```

Finding a few lowest eigenvalues of a sparse matrix

E = eigs(A,3,'sa'); % 3 lowest eigenvalues of A

You can get all eigenvalues of a sparse matrix A taking first a full form of it, and using eig:

E = eig(full(A)); % E is a vector

Getting also eigenvectors, Matlab returns eigenvalues in a diagonal matrix:

Е	=	diag(E)	:	%	di	iago	ona	al values	to	a	vector	Е
[V,E]	=	<pre>eig(full(A))</pre>	;	%	Е	is	a	diagonal	mat	r	ix	
[V,E]	=	eigs(A);		%	Е	is	а	diagonal	mat	r	ix	

Finally, the eigenvalues returned by **eig** or **eigs** are not necessarily in ascending order. To be sure, sort them yourself:

```
[E,ind] = sort(diag(E)); % if E is a matrix, else sort(E)
V = V(:,ind);
```

Here ind is the sorting index. Now V(:, 1) is the eigenvector corresponding to the lowest eigenvalue.