Vector analysis

Spring 2014

Exercise 3

Recital 26.3.

1. Evaluate the work $W=\int_{c} d \vec{r} \cdot \vec{F}$ of the force $\vec{F}(r)=(x+y z) \hat{i}+(y+x z) \hat{j}+(z+x y) \hat{k}$ when it moves an object from the origo $O=(0,0,0)$ to the point $P=(1,1,1)$
a. along the straight line OP
b. along the curve $x=t, \quad y=t^{2}, \quad z=t^{3}$
c. along the polygonal chain $O A, A B, B P$, where $A=(1,0,0)$ and $B=(1,1,0)$.
d. Calculate $\nabla \times \vec{F}$. What conclusion you can draw from this result concerning the parts a-c above?
2. Consider the position vector $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$.
a. Calculate $\nabla r, \nabla \cdot \vec{r}, \nabla \times \vec{r}$.
b. Show that $\nabla f(r)=f^{\prime}(r) \hat{r}$ ja $\nabla^{2} f(r)=\nabla \cdot(\nabla f(r))=f^{\prime \prime}(r)+2 \frac{f^{\prime}(r)}{r}$.
c. Calculate $\nabla \frac{1}{r}$ and $\nabla^{2} \frac{1}{r}$.
3. The temperature $T(x, y)$ at points of the $x y$-plane is given by $T(x, y)=x^{2}-2 y^{2}$.
a. Draw contour diagram for T showing some isotherms (curves of constant temperature).
b. In what direction should an ant at position $(2,1)$ move if it wishes to cool off as quickly as possible?
c. If the ant moves in that direction at speed k (units distance per unit time), at hwt ratedose it experience the decrease of the temperature.
d. Along what curve through $(2,-1)$ should the ant move in order to continue to experience maximum rate of cooling? (Adams 12.7, exercise 21).
4. Find a vector tangent to the curve of intersection of the two surfaces $x+y+z=6$ and $x^{2}+y^{2}+z^{2}=14$ at the point $(1,2,3)$. (Adams 12.7, exercise 27)
5. Calculate the divergence and curl of the vector fields
a. $x y \hat{i}+\left(z^{2}-2 y\right) \hat{j}+\cos y z \hat{k}$
b. $e^{y z} \hat{i}+e^{x z} \hat{j}+e^{x y} \hat{k}$
c. $\frac{x}{y} \hat{i}+\frac{y}{z} \hat{j}+\frac{z}{x} \hat{k}$
6. Derive the results
a. $\quad \nabla \cdot(\vec{A} \times \vec{B})=\vec{B} \cdot(\nabla \times \vec{A})-\vec{A} \cdot(\nabla \times \vec{B})$
b. $\nabla \cdot(\nabla \times \vec{A})=0$
c. $\quad \nabla \times(\nabla \phi)=0$
d. $\nabla \times(\phi \vec{A})=(\nabla \phi) \times \vec{A}+\phi(\nabla \times \vec{A})$
