Vector analysis

Spring 2014

Exercise 3

Recital 2.4

1. A triangle S has its vertices at the points $(x, y)=(0,0),(1,0)$ and $(1,1)$.
a. Evaluate the area of the triangle by integration
b. Calculate

$$
\iint_{S} d S \frac{\sin x}{x} .
$$

2. Consider the integral

$$
\iint_{A} d A y^{3} \frac{e^{x^{2}}}{x}=\int_{y=0}^{2} \int_{x=y^{2}}^{4} d x d y y^{3} \frac{e^{x^{2}}}{x} .
$$

a. Draw the surface A.
b. Perform the integration.
3. The region of integration S is the surface $S=\{(x, y): x+y \geq 0, y \leq 0, x \leq 1\}$.
a. Change the variables according to $u=x+y, v=x$ and evaluate the corresponding Jacobian.
b. What is the region of integration on the (u, v)-plane that corresponds to S ?
c. Evaluate

$$
\iint_{S} d S x^{3} \sqrt{x+y}
$$

with the change of variables given above.
4. Compute

$$
\iint_{S} d S(x+2 y+3 z),
$$

where S is the part of the plane $2 x-y+z=3$ that is above the triangle bounded by the x - and y-axes and the line $y=1-2 x$.
5. Compute

$$
\iint_{S} d S\left(x^{2}+y^{2}+3 z^{2}\right)
$$

where S is the part of the circular paraboloid $z=x^{2}+y^{2}$ with $x^{2}+y^{2} \leq 9$.
6. Compute

$$
\iint_{S} d x d y e^{-x^{2}-y^{2}}, \quad a^{2} \leq x^{2}+y^{2} \leq b^{2}
$$

with a suitable (obvious) change of variables. Draw the region S.

Deduce from your result the value of the integral $\int_{0}^{\infty} d x \mathrm{e}^{-x^{2}}$.

