Vector Analysis

Spring 2014

Exercise 6

Recital Wed 23.4.

1. The region V bounded by the planes $x=0, y=0$ and $z=2$ and the plane $z=x^{2}+y^{2}$ where $x \geq 0$ ja $y \geq 0$. Calculate the volume integral of the function $f(x, y, z)=x$ over V. This is calculated in the Lecture Notes (page 73) by performing first the z-integration. Do it now so that you start with the x integration.
2. Consider the object

$$
S=\left\{(x, y, z) \mid 0 \leq x \leq 1, x^{2} \leq y \leq x, x-y \leq z \leq x+y\right\} .
$$

a) Calculate the volume of S.
b) Calculate the mass of S when the density is given by

$$
\rho(x, y, z)=x+2 y+4 z\left(\mathrm{~kg} / \mathrm{m}^{3}\right) .
$$

3. Consider a sphere with radius a and its center in the origin. The density of the sphere is proportional to the distance from the center, that is $\rho(\vec{r})=\alpha r$, where α is a constant. Calculate the mass of the sphere

$$
M=\iiint_{S} \rho(\vec{r}) d V
$$

4. When the density distribution $\rho(\vec{r})$ of an object is given, the radius vector of the center of the mass of the object $\vec{r}_{C M}$ is obtained from the formula (study this in Adams 14.7)

$$
\vec{r}_{C M}=\frac{\iiint_{\text {object }} \rho(\vec{r}) \vec{r} d V}{\iiint_{\text {object }} \rho(\vec{r}) d V} .
$$

Calculate the radius vector of the center of mass of that part of an origincentered sphere (radius is a) that is in the octant $x \geq 0, y \geq 0, z \geq 0$. The density is assumed to be constant.
5. A circular cone with the height h and the vertex angle α is located as shown in the figure. Its density is ρ and mass M. Calculate the gravitational force the cone causes on a point like mass m located in the origin. According to Newton's theory of gravitation the force that an object of mass M causes on another object of mass m is given by

$$
\vec{F}=G \frac{m M}{d^{2}} \hat{e},
$$

where d is the distance between the centers of mass of the objects and \hat{e} is the unit vector pointing from m to M.

Hint: Calculate the force an infinitesimal mass unit $d M=\rho(\vec{r}) d V$ located in the point \vec{r} using the Newton's theory and integrate the over the cone. The integration can be performed e.g. using spherical or cylindrical coordinates (or both if you wish).

