Vector Analysis

Spring 2014

Exercise 7

Recital on Mon 5.5.

1. a) Show that the volume of an object is given by the formula

$$
V=\frac{1}{3} \oiint_{S} \vec{r} \cdot \hat{N} d S,
$$

where \vec{r} is the position vector and S is the surface of the object.
b) Using the law of Gauss that

$$
\iiint_{D} \nabla \phi d V=\oiint_{S} \phi \hat{N} d S .
$$

Hint: Apply the Gauss law to the vector $\vec{F}=\phi \vec{c}$, where \vec{c} is an arbitrary constant vector.
2. Evaluate the surface integral $\oiint_{D}(2 x y \hat{i}+3 y \hat{j}+2 z \hat{k}) \cdot d \vec{S}$, where D is the region bounded by the coordinate planes $x=0, y=0$ ja $z=0$ and the plane $x+y+z=1$.
(Answer: 11/12.)
3. Consider an object obtained when the curve

$$
\begin{aligned}
& r=\sqrt{x^{2}+y^{2}}=\cos u, \\
& z=\sin 2 u, \\
& -\frac{\pi}{2} \leq u \leq \frac{\pi}{2} .
\end{aligned}
$$

rotates around the z-axis.

Calculate the volume of the object,

$$
V=\iiint_{\text {kappale }} d V
$$

using Gauss’ law.
Hints: Notice that the simplest choice for the vector field is $\vec{F}=z \hat{k}$. To calculate the surface integral, give a parameter representation of the surface in
terms of u and the rotation angle $\theta(0 \leq \theta \leq 2 \pi)$. Present the surface unit $d S$ in terms of dud θ.
(Answer: $\pi^{2} / 2$.)
4. Consider the unit sphere $x^{2}+y^{2}+z^{2} \leq 1$. Use Gauss' law to evaluate

$$
I=\iiint_{D} z^{2} d V
$$

Hint: Again it would be wise to choose the simplest possible vector field.
(Answer: $4 \pi / 15$.)
5. Consider the vector field

$$
\vec{F}=(z-2 y) \hat{i}+(3 x-4 y) \hat{j}+(z+3 y) \hat{k} .
$$

Using Stokes’ theorem to evaluate

$$
\oint_{C} \vec{F} \cdot d \vec{r},
$$

where the curve C is
a) a unit sphere on the plane $z=2$,
b) the boundary of the triangle, whose vertices are at $(1,0,0),(0,1,0)$ and $(0,0,1)$.
(Answers 5π or -5π ja $9 / 2$ or $-9 / 2$.)
6. Calculate the curve integral of

$$
\vec{F}=\left(e^{x}-y^{3}\right) \hat{i}+\left(e^{y}+x^{3}\right) \hat{j}+e^{2} \hat{k}
$$

along the curve

$$
\vec{r}=\cos t \hat{i}+\sin t \hat{j}+\sin 2 t \hat{k} \quad(0 \leq t \leq 2 \pi) .
$$

Hint: Stokes. Notice that the curve is on the plane $z=2 x y$, according to a well known trigonometric rule.
(Answer: $3 \pi / 2$ or $-3 \pi / 2$.)

