Vector Analysis

Spring 2014

Excersize 2

Recital in 19.3.
1.
a. Evalaute the line integral of $\vec{F}=y \hat{i}+z \hat{j}-x \hat{k}$ along the straight line from the origo to (1,1,1).
b. Evalaute the line integral of $\vec{F}=z \hat{i}-y \hat{j}+2 x \hat{k}$ along the curve $\vec{r}(t)=t \hat{i}+t^{2} \hat{j}+t^{3} \hat{k}$ from $(0,0,0)$ to $(1,1,1)$.
2. Study whether the following vector fields $\vec{F}(x, y, z)$ have a potential $\phi(x, y, z)$. You can do it either by showing that a potential function does not exist or by constructing $\phi(x, y, z)$:
a. $\vec{F}=y \hat{i}+z \hat{j}-x \hat{k}$
b. $\vec{F}=x \hat{i}-2 y \hat{j}+3 z \hat{k}$
c. $\vec{F}=\frac{x \hat{i}+y \hat{j}}{x^{2}+y^{2}}$
3. Find out the vector field $\vec{E}(x, y, z)$, when the corresponding potential is

$$
\phi(x, y, z)=\left[x^{2}+y^{2}+z^{2}\right]^{1 / 2} .
$$

4. Calculate the tangent vector \hat{T} and normal vector \hat{N} of $\vec{c}(t)=\left[\left(t^{3} / 3-t\right] \hat{i}+t^{2} \hat{j}\right.$ at the point t $=3$. Having got the vectors check that they are perpendicular.
5. A particle moves along the curve $\vec{r}(t)=t \hat{i}+2 e^{t} \hat{j}+e^{2 t} \hat{k}$.
a. Calculate the velocity and acceleration of the particle at the moment $t=1$.
b. Calculate the distance the particle travels during $t=1$ to 2 .
c. Find the equation of the tangent vector at $t=0$.
d. Evaluate the curvature of the path of the particle at $\vec{r}(0)$.
6. As known from mechanics, the acceleration can be divided into a normal and tangential components:

$$
\vec{a}=a_{T} \hat{T}+a_{n} \hat{N} .
$$

Show that

$$
\vec{a}(t)=\frac{d^{2} s}{d t^{2}} \hat{T}+\left(\frac{d s}{d t}\right)^{2} \kappa \hat{N}
$$

or

$$
\vec{a}(t)=\frac{d v}{d t} \hat{T}+\frac{v^{2}}{\rho} \hat{N},
$$

where κ is the curvature of the path and ρ is the radius of the curvature.
7. A truck travelling at $80 \mathrm{~km} / \mathrm{h}$ and weighting 10000 kg is moving on an unbanked curved stretch of track. The equation of the curved section is the parabola $y=x^{2}-x(\mathrm{~m})$.
a. What is the frictional force exerted by the wheels of the truck at the point $(0,0)$ on the track?
b. If the coefficient of friction for the truck is 2.5 , what is the maximum speed it can achieve at the point $(0,0)$ without going off the track?

