Vector Analysis

Spring 2014

Exercise 1

Recital in We 12.3.

1. The intersection of the plane $x+y+z=1$ and the cylinder $z=x^{2}$ is a parabola. Give a parametric presentation for this parabola using x as parameter.
2. Determine the length of the parametrizised curve $\vec{r}=t^{2} \vec{i}+t^{2} \vec{j}+t^{3} \vec{k}, 0 \leq t \leq 1$.
3. Evaluate
a. $\quad \int_{C}(x+y) d s, \quad \vec{r}=a t \vec{i}+b \vec{j}+c t \vec{k}, \quad 0 \leq t \leq m$.
b. $\int_{C} y d s, \quad \vec{r}=t^{2} \vec{i}+t \vec{j}+t^{2} \vec{k}, \quad m \geq t \geq 0$. Here you start the integration from $t=m$. What changes if you perform the integration in the opposite direction, that is start from $t=0$?
4. Evaluate

$$
\oint\left(x^{2} y^{2} d x+x^{3} y d y\right)
$$

counter clockwise around the square with vertices $(0,0),(1,0),(1,1)$ and $(0,1)$.
5. For the vector field $\vec{F}=\left(\mathrm{x}^{2} y, y^{2}\right)$, find the value of $\int_{C} \vec{F} \cdot d \vec{s}$, where C is the portion of parabola $y=x^{2}$ from $(0,0)$ to $(1,1)$.
6. Calculate the mass of a metal string of the form $\vec{r}=3 t \vec{i}+3 t^{2} \vec{j}+2 t^{3} \vec{k}, \quad 0 \leq t \leq 1$, assuming that the mass (in some units) per (some) unit of length in the point $\vec{r}(t)$ is $1+t$.

