Vector Analysis

Spring 2014

Ex Tempore 4

Mon 17.3.

1. Evaluate the gradient ∇f of the following functions at the given points:
a. $f(x, y)=x^{2}-y^{2} \quad$ at $(2,-1)$
b. $f(x, y, z)=x y^{2} z^{3}$ at $(3,-1,2)$
c. $f(x, y, z)=\sin x \cos y \tan z$ at $(\pi / 6, \pi / 4, \pi / 3)$
2. Consider the function $f(x, y)=x^{2} y$.
a. Calculate the gradient ∇f.
b. Calculate the value of the directional derivative in the direction of the vector $\vec{u}=\frac{4}{5} \hat{i}-\frac{3}{5} \hat{j}$ at $(1,2)$.
c. In which direction the growth of f is the strongest at $(1,2)$?
3. Fuction $f(x, y)$ has at the point (a, b) directional derivatives

$$
\begin{aligned}
& \operatorname{grad}_{u} f(a, b)=3 \sqrt{2}, \\
& \operatorname{grad}_{v} f(a, b)=5,
\end{aligned}
$$

where the directions u and v are given by the vectors

$$
\hat{u}=(\hat{i}+\hat{j}) / \sqrt{2}, \quad \hat{v}=(3 \hat{i}-4 \hat{j}) / 5 .
$$

Evaluate $\nabla f(a, b)$.

