Vector Analysis

Spring 2014

Ex Tempore 4

Mon 17.3.

- 1. Evaluate the gradient ∇f of the following functions at the given points:
 - a. $f(x, y) = x^2 y^2$ at (2,-1) b. $f(x, y, z) = xy^2 z^3$ at (3,-1,2) c. $f(x, y, z) = \sin x \cos y \tan z$ at $(\pi / 6, \pi / 4, \pi / 3)$
- 2. Consider the function $f(x, y) = x^2 y$.
 - a. Calculate the gradient ∇f .
 - b. Calculate the value of the directional derivative in the direction of the vector $\vec{u} = \frac{4}{5}\hat{i} \frac{3}{5}\hat{j}$ at (1,2).
 - c. In which direction the growth of f is the strongest at (1,2)?
- 3. Fuction f(x, y) has at the point (a, b) directional derivatives

$$\operatorname{grad}_{u} f(a,b) = 3\sqrt{2},$$

 $\operatorname{grad}_{v} f(a,b) = 5,$

where the directions u and v are given by the vectors

$$\hat{u} = (\hat{i} + \hat{j}) / \sqrt{2}, \quad \hat{v} = (3\hat{i} - 4\hat{j}) / 5.$$

Evaluate $\nabla f(a,b)$.