Vector Analysis Spring 2014

Ex Tempore 8 Wed 2.4.

1. Calculate in terms of cylindrical coordinates ∇u and $\nabla \cdot \vec{v}$, where

a)
$$u = \rho$$
, $\vec{v} = \rho \hat{\rho} + z \hat{z}$
b) $u = z^3 \rho$, $\vec{v} = \hat{\phi}$

2. The spherical coordinates of a point are (r, θ, ϕ) , and the position vector is

$$\vec{r} = r\sin\theta\cos\phi\hat{i} + r\sin\theta\sin\phi\hat{j} + r\cos\theta\hat{k}.$$

Derive the expressions of the basis unit vectors $\hat{r}, \hat{\theta}$ and $\hat{\phi}$ of spherical coordinate system at this point in terms of the unit vectors \hat{i}, \hat{j} and \hat{k} . Give also the values of the corresponding scale factors h_r , h_{θ} and h_{ϕ} .

3. Calculate in spherical coordinate system ∇u and ∇ · v, where
a) u = sin θ, v = r θ
b) u = r² sin φ, v = r + θ + φ