Vector Analysis
Spring 2014

Ex Tempore 8

Wed 2.4.

1. Calculate in terms of cylindrical coordinates ∇u and $\nabla \cdot \vec{v}$, where
a) $u=\rho, \quad \vec{v}=\rho \hat{\rho}+z \hat{z}$
b) $u=z^{3} \rho, \quad \vec{v}=\hat{\phi}$
2. The spherical coordinates of a point are (r, θ, ϕ), and the position vector is

$$
\vec{r}=r \sin \theta \cos \phi \hat{i}+r \sin \theta \sin \phi \hat{j}+r \cos \theta \hat{k}
$$

Derive the expressions of the basis unit vectors $\hat{r}, \hat{\theta}$ and $\hat{\phi}$ of spherical coordinate system at this point in terms of the unit vectors \hat{i}, \hat{j} and \hat{k}. Give also the values of the corresponding scale factors h_{r}, h_{θ} and h_{ϕ}.
3. Calculate in spherical coordinate system ∇u and $\nabla \cdot \vec{v}$, where
a) $u=\sin \theta, \vec{v}=r \hat{\theta}$
b) $u=r^{2} \sin \phi, \quad \vec{v}=\hat{r}+\hat{\theta}+\hat{\phi}$

