Exam 23.10.2013

3. Calculate the amount (mol) and composition (\%) of the flue gases with the following input data. Composition of the fuel under consideration (in wt\%): C 50 , H 6.3, S $0.1, \mathrm{O}$ $42.5, \mathrm{~N} 0.1$ and the rest is ash. Moisture content $25 \mathrm{wt} \%$. The fuel is combusted with air ($21 \mathrm{vol} \% \mathrm{O}_{2}$ and $79 \mathrm{vol} \% \mathrm{~N}_{2}$). Assume stoichiometric combustion (no excess air). Use 1 kg of fuel as calculation basis. Useful molecular weights ($\mathrm{g} / \mathrm{mol}$) C $12.01, \mathrm{H} 1.01, \mathrm{O}$ 16.0, N 14.01, S 32.07, $\mathrm{CO}_{2} 44.01, \mathrm{H}_{2} \mathrm{O}$ 18.02, $\mathrm{O}_{2} 32.0, \mathrm{~N}_{2}$ 28.01, SO_{2} 64.07. (5 p.)
4. a) Considering the previous problem (3), calculate the average temperature of the flue gases, using the following input values: Fuel loose density $300 \mathrm{~kg} / \mathrm{m}^{3}$, Heating value (as received) $14.01 \mathrm{MJ} / \mathrm{kg}$, moisture 25%. Wood is burned with air with the air factor 1.2. The temperature of air at inlet is $200^{\circ} \mathrm{C}$. Fuel is assumed to be at the reference temperature $25^{\circ} \mathrm{C}$. Heat loss from the combustor walls is 5% of the thermal capacity. The capacity of the combustor is $1 \mathrm{MW}_{\mathrm{th}}$. (4 p .)

Averaged specific heat constants (J/molK) $\mathrm{CO}_{2} 51.7, \mathrm{H}_{2} \mathrm{O} 41.7, \mathrm{O}_{2} 32.0, \mathrm{~N}_{2} 31.0, \mathrm{SO}_{2}$ 52.1

SOLUTION

Gas composition from the material balance:

Flowrates of species in and out

Fuel in (mol)	Flue gases out (mol)	vol \%
C: $0.5 * 1000 *(1-0.25) / 12.01=31.22$	CO_{2} : 31.22	16.2
H: 0.063*1000*(1-0.25)/1.01 $=46.78$	$\mathrm{H}_{2} \mathrm{O}: 46.78 / 2+13.87=37.26$	19.35
O: $0.425 * 1000 *(1-0.25) / 16.0=19.92$	$\begin{aligned} & \mathrm{O}_{2}: 32.98+19.92 / 2-42.94= \\ & 0 \end{aligned}$	0
$\mathrm{N}: 0.001 * 1000 *(1-0.25) / 14.01=0.053$	$\mathrm{N}_{2}: 124.07+0.053 / 2=124.1$	64.43
S: $0.001 * 1000 *(1-0.25) / 32.07=0.023$	SO2: 0.023	0.012
Ash: $0.01 * 1000 *(1-0.25)=7.5 \mathrm{~g}$		
Water: $0.25 * 1000 / 18.02=13.87$		
St. $\mathrm{O}_{2}: 31.22+0.5 * 46.78 / 2+0.023=$ 42.94	Flue gases total 192.6	
$\begin{aligned} & \text { O2 (air) }=1.0 * 42.94-19.92 / 2=32.98 \\ & \text { *) } \end{aligned}$		
N2 (air) $=79 / 21 * 32.98=124.07$	Ash: 7.5 g	

*) Stoichiometric combustion (no excess air): $\lambda=1.0$
$\lambda=\left(\mathrm{n}_{\mathrm{O} 2, \mathrm{~A}}+\mathrm{n}_{\mathrm{O} 2, \mathrm{f}}\right) / \mathrm{n}_{\mathrm{O} 2, \mathrm{St} .} \rightarrow \mathrm{n}_{\mathrm{O} 2, \mathrm{~A}}=\lambda * \mathrm{n}_{\mathrm{O} 2, \mathrm{St} .}-\mathrm{n}_{\mathrm{O} 2, \mathrm{f}}=1.0 * 3.07-1.42 / 2=2.36$ $\mathrm{mol} / \mathrm{s}$

Flue gas temperature from the energy balance:

Calculation basis the fuel heating value
Fuel heating value as fed $(\mathrm{MJ} / \mathrm{kg})=14.01$
\rightarrow Fuel feed $1 \mathrm{MJ} / \mathrm{s} /(14.01 \mathrm{MJ} / \mathrm{kg}) * 1000 \mathrm{~g} / \mathrm{kg}=71.38 \mathrm{~g} / \mathrm{s}$
Or if you have used 1 kg of fuel as basis, that is also ok.

Combustor heat loss: 0.05* $1 \mathrm{MW}=0.05 \mathrm{MW}=5 \mathrm{E} 4 \mathrm{~J} / \mathrm{s}$

Energy flowrates of species in and out

Fuel in $(\mathrm{J} / \mathrm{s})$ at reference temperature	Flue gases out $(\mathrm{J} / \mathrm{s})$
$\mathrm{C}: \mathrm{n}_{\mathrm{C}}{ }^{*} \mathrm{C}_{\mathrm{p}}{ }^{*}(298.15-298.15)=0$	$\mathrm{CO}_{2}: 2.23 * 51.7 *\left(\mathrm{~T}_{2}-298.15\right)=?$
$\mathrm{H}: \mathrm{n}_{\mathrm{H}}{ }^{*} \mathrm{C}_{\mathrm{p}}{ }^{*}(298.15-298.15)=0$	$\mathrm{H}_{2} \mathrm{O}: 2.66 * 41.7 *\left(\mathrm{~T}_{2}-298.15\right)=?$
$\mathrm{O}: \mathrm{n}_{\mathrm{O}}{ }^{*} \mathrm{C}_{\mathrm{p}}{ }^{*}(298.15-298.15)=0$	$\mathrm{O}_{2}: 0.614^{*} 32^{*}\left(\mathrm{~T}_{2}-298.15\right)=?$
$\mathrm{~N}: \mathrm{n}_{\mathrm{N}}{ }^{*} \mathrm{C}_{\mathrm{p}}{ }^{*}(298.15-298.15)=0$	$\mathrm{~N}_{2}: 11.19 * 31^{*}\left(\mathrm{~T}_{2}-298.15\right)=?$
$\mathrm{~S}: \mathrm{n}_{\mathrm{S}}{ }^{*} \mathrm{C}_{\mathrm{p}}{ }^{*}(298.15-298.15)=0$	$\mathrm{SO}_{2}: 0.002 * 52.1^{*}\left(\mathrm{~T}_{2}-298.15\right)=?$
Ash: $\mathrm{n}^{*} \mathrm{C}_{\mathrm{p}}{ }^{*}(298.15-298.15)=0$	
Water: $\mathrm{n}_{\mathrm{H} 2 \mathrm{O}}{ }^{*} \mathrm{C}_{\mathrm{p}} *(298.15-298.15)=0$	
Fuel combustion energy 1.0E6	$\mathrm{H}_{\text {Ash }} \approx 0$
Air feed:	
$\mathrm{O}_{2}=2.36 * 32 *(473.15-298.15)=1.32 \mathrm{E} 4$	
$\mathrm{~N}_{2}=8.88 * 31 *(473.15-298.15)=4.82 \mathrm{E} 4$	$\mathrm{H}_{\text {loss }}=5 \mathrm{E} 4$

Now Energy in = Energy out (J/s)

$$
\begin{aligned}
& \mathrm{H}_{\text {Fuel }}+\mathrm{H}_{\text {combustion }}+\mathrm{H}_{\text {Air }}=\Sigma \mathrm{H}_{\text {gases }}+\mathrm{H}_{\text {ash }}+\mathrm{H}_{\text {loss }} \\
& \quad \rightarrow 0+1 \mathrm{E} 6+1.32 \mathrm{E} 4+4.82 \mathrm{E} 4=2.23 * 51.7 *\left(\mathrm{~T}_{2}-298.15\right)+2.66 * 41.7^{*}\left(\mathrm{~T}_{2^{-}}\right. \\
& \quad 029.15)+0 * 32 *\left(\mathrm{~T}_{2}-298.15\right)+8.88 * 31 *\left(\mathrm{~T}_{2}-298.15\right)+0.002 * 52.1^{*}\left(\mathrm{~T}_{2^{-}}\right. \\
& \quad 298.15)+0+5 \mathrm{E} 4 \\
& \rightarrow \mathrm{~T}_{2}=1011400 / 501.6+298.15=2314.5 \mathrm{~K}=2041.3^{\circ} \mathrm{C}
\end{aligned}
$$

