Matematiikan peruskurssi Exercise 3 9.2.2017

In exercises 1-6 we use the matrices

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 3 & 0 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 4 & 5 & 1 \\ 4 & 0 & 1 \\ 0 & 5 & 2 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix},$$
$$D = \begin{bmatrix} 1 & 0 & 1 & 4 \\ 0 & 2 & 0 & 4 \\ 3 & 0 & 0 & 1 \end{bmatrix}, \quad E = \begin{bmatrix} 4 & 5 & 1 & 1 & 2 \end{bmatrix} \quad \text{ja} \quad F = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 2 \\ 2 \end{bmatrix}$$

1. What are the dimensions of the matrices A, B, C, D, E ja F, i.e. how many rows and columns do they have? Are some of these matrices row- column- or squarematrices? How about diagonalmatrices? Or symmetric?

2. Compute

- (a) A + B
- (b) B C
- 3. Compute C 5A 5B ja D + A, if possible.
- 4. Compute AD.
- 5. Compute
- (a) D^{T}
- (b) A^{T}
- (c) $D^{\mathsf{T}}A^{\mathsf{T}}$ (Hint: rules of transpose computation might help)

6. Compute

- (a) EF
- (b) FE

7. Let

$$A = \begin{bmatrix} 3 & 2 & 0 \\ 4 & 0 & 1 \\ 0 & -3 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & \frac{1}{5} & 0 \\ 3 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix}, \quad C = \begin{bmatrix} 4 & 1 & 0 \\ 15 & -1 & 0 \\ 5 & 5 & 4 \end{bmatrix}.$$

Compute 5AB - AC ja 5BA - CA. (Hint: you may use the rules of matrix multiplication and addition).

8. Compute the determinants

(a) det
$$\begin{bmatrix} 3 & 4 \\ 1 & 2 \end{bmatrix}$$

(b) det $\begin{bmatrix} 2 & 1 & 1 \\ 0 & 3 & 4 \\ -2 & 1 & 2 \end{bmatrix}$.
9. Let $C = \begin{bmatrix} c_{11} & 0 & \cdots & 0 \\ 0 & c_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \end{bmatrix}$.

 $\begin{bmatrix} \cdot & \cdot & \cdot & \cdot \\ 0 & 0 & \cdots & c_{nn} \end{bmatrix}$ Compute (or guess in part (b)) the determinant of the diagonal matrix C, det C, when

(a)
$$n = 3$$

(b)
$$n > 3$$

(10^{*}). Find 2×2 -matrices A, B, C, and D for which it holds:

- (a) $AB \neq BA$,
- (b) CD = 0, but $C \neq 0$ and $D \neq 0$ (note that here "0" stands for the 2×2 -matrix whose all terms are zero).