Matematiikan peruskurssi

Exercise 8

16.3.2017

- 1. Compute the indefinite integral $\int x^2 e^x dx$ using integration by parts (twice).
- 2. Compute the indefinite integrals $\int \frac{4x^3+8x}{x^4+4x^2+6} dx$ and $\int \frac{2x}{(x^2+1)^2} dx$. (Hint: you can use the substitutions $t=x^4+4x^2+6$ ja $t=x^2+1$)
- 3. Compute the indefinite integral $\int 2x^3 e^{x^2} dx$. (Hint: integration by parts, choose $f'(x) = 2xe^{x^2}$ and $g(x) = x^2$)
- 4. Compute the indefinite integral $\int 3x^2 \log(x^3) dx$ using the substitution $t = x^3$.
- 5. Compute the indefinite integral $\int e^{x^{\frac{1}{3}}} dx$ using the substitution $x = g(t) = t^3$.
- 6. Calculate $\int_0^1 f(x) dx$ when

(a)
$$f(x) = 3x^2 + 2x - 2$$
, (b) $f(x) = e^{-x}$, (c) $f(x) = \sin(1 - x)$.

- 7. Calculate $\int_1^2 x \log(x) dx$.
- 8. Calculate $\int_3^8 \frac{\cos(\sqrt{x+1})}{\sqrt{x+1}} dx$ using the substitution $t = \sqrt{x+1}$.
- 9. Calculate $\int_1^4 \sqrt{\sqrt{x} 1} dx$. (Hint: use for example the substitution $x = (t^2 + 1)^2$ or $x = (t + 1)^2$)
- 10. Calculate the improper integrals

(a)
$$\int_1^\infty \frac{1}{x^3} dx$$
, (b) $\int_0^1 \frac{1}{x^{\frac{1}{3}}} dx$.

- (11*). Compute the indefinite integral $\int \log(x)^2 dx$. (Hint: check in the lectures how we computed $\int \log(x) dx$)
- (12*). Calculate

(a)
$$\int_0^{\frac{\pi}{2}} \sin(x) \cos^3(x) dx$$
, (b) $\int_0^{\frac{\pi}{2}} \sin^3(x) \cos^3(x) dx$.

(Hint: Pythagorean theorem may be useful in part (b))

- (13*). Compute the indefinite integral $\int \frac{1}{x \log(x)} dx$. (Hint: use the substitution $t = \log(x)$)
- (14*) Calculate
 - (a) $\frac{d}{dx} \int_0^x e^{t^2} dt$. (Hint: DON'T try to integrate, instead use the fundamental theorem of calculus. The task is to differentiate the function $F(x) = \int_0^x e^{t^2} dt$ with respect to variable x)
- (b) $\frac{d}{dx} \int_0^{-2x} e^{t^2} dt$. (Hint: Chain rule and part (a))

(15*). Let $f:[a,b] \to \mathbb{R}$ be continuous, and let M be the largest value of the function f on the interval [a,b], and let m be the smallest value of the function f on the interval [a,b]. Prove that

$$m(b-a) \le \int_a^b f(x) dx \le M(b-a).$$

(Hint: Monotonicity of the integral)

(16*). Prove the **mean value theorem of integration**: Assume that $f:[a,b] \to \mathbb{R}$ is continuous. Prove that there exists $c \in [a,b]$ such that

$$f(c)(b-a) = \int_a^b f(x) dx.$$

(Hint: Set $k = \frac{\int_a^b f(x) dx}{b-a}$, and deduce using Bolzano's theorem and exercise (15*), that function f must attain value k at some point between [a,b])

(17*). Assume that $f:[a,b]\to\mathbb{R}$ is continuous. Prove that for all $x\in(a,b)$ it holds

$$\lim_{h \to 0} \frac{1}{2h} \int_{x-h}^{x+h} f(t)dt = f(x).$$

(Hint: Use the mean value theorem of integration, and the continuity of function f)