QUANTUM MECHANICS I A (FYSA231), spring 2010

Exercise 5.

1. Normalized wave function of the ground state of hydrogen atom is

$$
\psi(\vec{r})=\left(\pi a_{0}^{3}\right)^{-1 / 2} e^{-r / a_{0}}
$$

Calculate the most probable value for r . Comaper the result with exercise $4 / 4$ result and $2 / 5$ result. What do you notice?
2. Show by using Dirac's delta-function $\int_{-\infty}^{\infty} \mathrm{d} x \delta(x) f(x)=f(0)$ that following are true
a) $\int_{-\infty}^{\infty} \mathrm{d} x \delta(x-a) f(x)=f(a)$
b) $\int_{-\infty}^{\infty} \mathrm{d} x x \delta(x) f(x)=0$.
c) $\delta(a x)=\frac{1}{|a|} \delta(x)$, when $a \neq 0$.
d) $\int_{-\infty}^{\infty} \mathrm{d} x \delta^{\prime}(x) f(x)=-f^{\prime}(0)$.
3. Let us study the time development of a 2-state system and how to calculate the probabilities related to the measured observables. Assume that $|1\rangle$ ja $|2\rangle$ are orthonormal eigenvectors. Hamilton's operator of the system is defined as:

$$
\begin{aligned}
\hat{H}|1\rangle & =-E|1\rangle \\
\hat{H}|2\rangle & =E|2\rangle
\end{aligned}
$$

Let there be also an observable A and corresponding operator \hat{A}, so that

$$
\begin{aligned}
& \hat{A}|1\rangle=-i \hbar|2\rangle \\
& \hat{A}|2\rangle=i \hbar|1\rangle
\end{aligned}
$$

a. Energy of the system is measure at time $t=0$ and the result is $-E$. After this energy is measured at time $t=\frac{\pi \hbar}{3 E}$. What are the possible results and which probability one gets them?
b. One measures A at time ä $t=0$ and gets \hbar. After this one measure energy at the time $t=\frac{\pi \hbar}{3 E}$. What are the possible results and which probability one gets them?
c. One measures A at time $t=0$ and gets result \hbar. After this A is measured again at time $t=\frac{\pi \hbar}{3 E}$. What are the possible results and which probabilty one gets them?
d. Is A constant of the motion of the system?
4. Potential $V(x)$ is defined as

$$
V(x)=\left\{\begin{array}{l}
0, \text { if } x \leq 0 \\
-V_{0}, \text { if } 0<x<L \\
0, \text { if } L \leq x
\end{array}\right.
$$

Particle beam moves along x-axis. Assume that incoming wave has shape $\phi=A e^{i k x}$.
a) Find the equations for solving the amplitudes.
b) Show that the amplitude of the reflected wave is

$$
A_{2}=e^{i q L} \frac{2 i\left(q^{2}-k^{2}\right) \sin (q L)}{(q+k)^{2}-(q-k)^{2} e^{2 i q L}}
$$

missä $\hbar^{2} k^{2} /(2 m)=E$ and $\hbar^{2} q^{2} /(2 m)=E+V_{0}$
5. Continues.
a) Show that the reflection coefficient is

$$
R=\frac{\left(q^{2}-k^{2}\right)^{2} \sin ^{2}(q L)}{4 q^{2} k^{2}+\left(q^{2}-k^{2}\right)^{2} \sin ^{2}(q L)} .
$$

b) use notations $k^{2} L^{2}=\varepsilon$ and $\left(q^{2}-k^{2}\right) L^{2}=\varepsilon_{0}$, this leads to $E=$ $\left(\hbar^{2} /\left(2 m L^{2}\right)\right) \varepsilon$ and $V_{0}=\left(\hbar^{2} /\left(2 m L^{2}\right)\right) \varepsilon_{0}$. Show that the transmission coefficient is

$$
T=\frac{4\left(\varepsilon_{0}+\varepsilon\right) \varepsilon}{4\left(\varepsilon_{0}+\varepsilon\right) \varepsilon+\varepsilon_{0}^{2} \sin ^{2}\left(\sqrt{\varepsilon_{0}+\varepsilon}\right)} .
$$

c) What are the values of T, when $\varepsilon \rightarrow 0$ and $\varepsilon \rightarrow \infty$? Did they met your expectations?
d) Use $\varepsilon_{0}=100$ and $\varepsilon=0-300$ and draw T as a function of ε.

