
Bayesian statistics, home exam, spring 2011
Instructions: two exercises from (1)-(3) are enough to pass the exam with

a good grade. You can use the literature, and ask for advice from the teacher.
To be returned before summer.

1. You end up abroad in a big city, whose size is unknown to you. The �rst
thing you see is a couple of busses with line numbers 87 and 144. Assume
that bus lines are numbered by integers starting from 1, and that every
bus line has the same probability to be observed.

Using this observation, what you can deduce about the number of bus
lines in the city ?

Assign a prior to the number of bus lines N . Compute the posterior
distribution, the posterior expectation and the maximum of the posterior
of N .

Do this under two di�erent prior, one uninformative and one informative
bases on your knowledge.

If needed you can approximate sums by integrals.

∞∑
n=1

f(n) ∼
∫ ∞

0

f(x)dx

2. We compare linear and quadratic regression models:

M1 : Yi = a+ bXi + σεi

M2 : Yi = α+ βXi + γX2
i + ηεi

jossa εi ∼ N (0, 1) are i.i.d. standard -gaussian , E(εi) = 0, E(ε2i ) = 0.

The Data is given by (Xi, Yi, i = 1, . . . , N) where Xi (meters/second) is
the speed of a car at the moment of braking, and Yi (meters) is the braking
distance, how many meters away the car stops completely after braking.

• De�ne informative priors for the parameters (a, b, σ), in model M1

and for the parameters (α, βγ, η) in modelM2.

In case you have been driving or travelled by car, use your own prac-
tical experience about braking. If you want you can use also your
knowledge from school physics.

The choice of the prior should not be based on the Y data, so don't
look at the Y data before you have chosen the prior.

Use the gaussian-inverse gamma joint distribution as conjugate prior.

• Using R look at the linear and quadratic regression curves

X = (4, 4, 7, 7, 8, 9, 10, 10, 10, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15,
16, 16, 17, 17, 17, 18, 18, 18, 18, 19, 19, 19, 20, 20, 20, 20, 20, 22, 23, 24, 24, 24, 24, 25)
Y = (2, 10, 4, 22, 16, 10, 18, 26, 34, 17, 28, 14, 20, 24, 28, 26, 34, 34, 56, 26, 36, 60, 80, 20, 26,
54, 32, 40, 32, 40, 50, 42, 56, 76, 84, 36, 46, 68, 32, 48, 52, 56, 64, 66, 54, 70, 92, 93, 120, 85)

(the data is in a �le downloadable from the Koppa-webpage).
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• Compute the posterior distribution of the parameters in both models.

• Compute the posteriors also by using Winbugs, compare the results.

• Compute the posterior distribution also under the non-informative
improper prior with

π(β) = π(α) = π(γ) = π(b) = π(a) = 1, π(η2) =
1
η2
, π(σ2) =

1
σ2

• The Bayes' factor is given by

p(Y |X,M2)
p(Y |X,M1)

=∫∞
0

∫∞
−∞

∫∞
−∞

∫∞
−∞ p(Y |α, β, γ, η2,M1)π(α|η2)π(βη2)π(γ|η2)π(η2)dαdβdγdη2∫∞

0

∫∞
−∞

∫∞
−∞ p(Y |a, b, σ2,M1)π(a|σ2)π(b|σ2)π(σ2)dbdadσ2

The Bayes' factor depends on the choice of the prior. Remember that
in the model choice setting in order to compare two models the pa-
rameter's prior must be a proper probability distribution. An excep-
tion is the case when the same parameter appears in both models.
For example the conditional variances of the residuals, σ2, η2, could
have the same improper prior in both models.

i) Compute the Bayes factor by using normal approximation around
the maximum of the posterior. Use the informative proper prior.

ii) Compute the same Bayes factor by using Winbugs. You can adapt
the winbugs code

Pine: Bayes factors using pseudo priors, page 38 http://www.mrc-
bsu.cam.ac.uk/bugs/winbugs/Vol3.pdf

iii) Exactly: by integrating the parameters analytically under the
conjugate prior. This you can do by looking at the normalizing cons-
tant in the conjugate prior family.

iv) Assume that the prior probabilities for the model are π(M1) =
π(M2) = 1/2, compute the posterior probability P (I = 2|Y,X) of
the model indicator I.

v) Compute the Bayes factor again under a less informative choice
of the prior.

3. (How many components in the mixture ?)

Let {Mm: m ∈ N} a mixed gaussian model gaussian model for the data
X, with conditional density

p(x|θm,Mm) =
m∑
`=1

ω`φ

(
x− x`
ηl

)
where

φ(x) =
1√
2π

exp
(
−x

2

2
)

is the standardi gaussian density.
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θm = (ω`, x`, η` : ` = 1, . . . ,m)
is the parameter of the modelMm.

Here ωk ∈ [0, 1] and (ω1 + · · ·+ωm) = 1, which means that ω is a discrete
probability. The conjugate prior distribution for the discrete probability
vactor in a multinomial model is given by the Dirichlet distribution with
density

p(ω1, . . . , ωm−1, ωm) ∝
{ m∏
k=1

ωαk−1
k 1(ωk ∈ [0, 1])

}
1(ω1 + · · ·+ ωm)

In order to obtain an identi�able model assume x1 ≤ x2 ≤ · · · ≤ xm.
Let be X be the data with sample size N = 100,

X = c(−0.0153, 0.0305,−0.0120, 0.0856, 0.1742, 0.0465, 0.1982, 0.1541, 0.3241, 0.0961, 0.0981, 0.5720, 0.4922, 0.4976,
0.6387, 0.8265, 0.8685, 1.0255, 1.1858, 1.1593, 1.2203, 1.3839, 1.5694, 1.3769, 1.4005, 1.5517, 1.4777, 1.4597, 1.6067,
1.6918, 1.6941, 1.5925, 1.7422, 1.9580, 2.2188, 2.2998, 2.6073, 2.7795, 2.7310, 3.0587, 3.3305, 3.5364, 3.4311, 3.5320,
3.6299, 3.8725, 3.7669, 3.8347, 3.5253, 3.5071, 3.3509, 3.3257, 3.2347, 3.0698, 3.3924, 2.3479, 2.1231, 1.7488, 1.1923,
1.4268, 1.3024, 1.0590, 0.8167, 0.9264, 0.5895, 0.8094, 0.8233, 0.7721, 0.6843, 0.5710, 0.6625, 0.5485, 0.3989, 0.5159,
0.4660, 0.3813, 0.5022, 0.4332, 0.4025, 0.3460, 0.5640, 0.4776, 0.3380, 0.3575, 0.4999, 0.5250, 0.4405, 0.2898, 0.1683,
0.2838, 0.1174, 0.0647, 0.1204, 0.1818, 0.1004, 0.0915, 0.1725, 0.0785,−0.0797, 0.1072)

(download the data �le from Koppa web-page). Compute the Bayes factor
by using Winbugsilla (an exact computation with sample size N = 100
would be too demanding, why ?)

p(X|Mm)
p(X|M1)

whereM1 is the model with only one component. Do this for m = 2, 3, 4.
Since we are comparing two particular models with the Bayes' factor, you
don't need to consider the other models. You can assume as a model prior
that

π(M1) = π(Mm) = 1/2

4. You don't need to answer to this question if you don't want, and in any
case your answer will not change the result of the exam.

Tell your honest phylosophical opinion about Bayes' theory:

• You became a sincere Bayesian statisician, who accepts that all quan-
tities which are unknown to you are in the same way random and
probability represents your partial information about the uknown.

• Or you believe that the law of nature determine the probabilities of
the events. Bayes theory provides just another useful method, which
requires for technical reasons to assign a probability distribution to
the unknown parameters, which in reality are not to be considered
as �truly random� quantities.

It is enough to give a Yes/No answer, longer answers are also welcome.
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