Demo 10, Partial Differential Equations, 2021

1. Solve the problem

$$
\left\{\begin{array}{l}
\partial_{t t} u-\partial_{x x} u=x^{2}, \quad \text { in } \mathbb{R} \times(0, \infty) \\
u(x, 0)=x, \\
\partial_{t} u(x, 0)=0
\end{array}\right.
$$

Hint: See section 6.6 in lecture note.
2. Solve the problem

$$
\left\{\begin{array}{l}
\partial_{t t} u-\partial_{x x} u=x t \quad \text { in } \mathbb{R} \times(0, \infty) \\
u(x, 0)=0 \\
\partial_{t} u(x, 0)=0
\end{array}\right.
$$

3. Let $L>0$. Derive using separation of variables a formal series solution to

$$
\left\{\begin{array}{l}
\partial_{t} u-\partial_{x x} u=0 \\
u(0, t)=0, u(L, t)=0 \\
u(x, 0)=f(x)
\end{array} \quad(0, L) \times(0, \infty),\right.
$$

where $0 \leq x \leq L$ and $t \geq 0$.
4. Let $L>0$. Derive using separation of variables a formal series solution to the Neumann problem

$$
\left\{\begin{array}{l}
\partial_{t} u-\partial_{x x} u=0 \\
\partial_{x}(0, t)=0, \partial_{x}(L, t)=0 \\
u(x, 0)=f(x)
\end{array} \quad(0, L) \times(0, \infty),\right.
$$

where $0 \leq x \leq L$ and $t \geq 0$.

