1. Classify the PDEs.
(a) Linear transport equation

$$
\partial_{t} u+b \cdot D u=0
$$

linear, first order;
(b) Laplace's equation

$$
\Delta u=0
$$

linear, second order;
(c) Poisson's equation

$$
\Delta u=f
$$

linear, second order;
(d) p-Laplace equation

$$
\operatorname{div}\left(|D u|^{p-2} D u\right)=0
$$

quasilinear, second order;
(e) Heat equation

$$
\partial_{t} u-\Delta u=0
$$

linear, second order;
(f) Wave equation

$$
\partial_{t} \partial_{t} u-\Delta u=0
$$

linear, second order;
(g) Eikonal equation

$$
|D u|^{2}=1
$$

fully non-linear, first order;
(h) Non-linear Poisson's equation

$$
-\Delta u=f(u)
$$

semi-linear, second order;
(i) Navier-Stokes equation

$$
\left\{\begin{array}{l}
\partial_{t} u_{i}-\Delta u_{i}+u \cdot D u_{i}=\partial_{x_{i}} p \\
\operatorname{div} u=0
\end{array}\right.
$$

semi-linear, second order.
2. Let $u(x)=|x|^{\alpha}, x \in \mathbb{R}^{N}, x \neq 0$, where $\alpha \in \mathbb{R}$. Calculate $\Delta u(x)$.

Solution. Let

$$
u(x)=|x|^{\alpha}=\left(x_{1}^{2}+x_{2}^{2}+\ldots+x_{N}^{2}\right)^{\frac{\alpha}{2}} .
$$

If $x \neq 0$, then

$$
D_{i} u(x)=\alpha|x|^{\alpha-2} x_{i}
$$

and

$$
D_{i i} u(x)=\alpha|x|^{\alpha-2}+\alpha(\alpha-2)|x|^{\alpha-4} x_{i}^{2}
$$

for $i=1, \ldots, N$. Therefore

$$
\Delta u(x)=\sum_{i=1}^{N} D_{i i} u(x)=\alpha(N+\alpha-2)|x|^{\alpha-2}
$$

3. Suppose that $u \in C^{1}\left(\mathbb{R}^{N}\right)$ and $\varphi \in C_{0}^{1}\left(\mathbb{R}^{N}\right)$. Prove that

$$
\int_{\mathbb{R}^{N}} u D_{k} \varphi d x=-\int_{\mathbb{R}^{N}} \varphi D_{k} u d x, \quad k=1,2, \ldots, N .
$$

Proof. Since $\varphi \in C_{0}^{1}\left(\mathbb{R}^{N}\right)$, there is $R>0$ such that the support of φ is contained in $B(0, R)$, that is

$$
\operatorname{spt}(\varphi) \subset B(0, R)
$$

By the Gauss-Green theorem, we have

$$
\begin{equation*}
\int_{B(0, R)} D_{k}(u \varphi) d x=\int_{\partial B(0, R)} u \varphi \nu_{k} d S(x)=0 \tag{1}
\end{equation*}
$$

for $k=1,2, \ldots, N$, where ν is the outward normal unit vector and the second equality follows from the fact that

$$
\varphi=0 \quad \text { on } \partial B(0, R)
$$

We rewrite (1) as

$$
\int_{B(0, R)} u D_{k} \varphi d x=-\int_{B(0, R)} \varphi D_{k} u d x
$$

Since $\varphi \equiv 0$ outside of $B(0, R)$, this implies the claim.
4. Consider the Neumann problem:

$$
\begin{cases}\Delta u(x)=f(x), & x \in \Omega \\ \frac{\partial u}{\partial \nu}(x)=0, & x \in \partial \Omega\end{cases}
$$

Show that if the problem has a solution, then it has many solutions.

Proof. If u is a solution, then so is $v:=u+c$ for any $c \in \mathbb{R}$.
5. Is the equation $\Delta u=0$ in divergence form? Let $u \in C^{2}$ and $D u \neq 0$, $p>2$. How about

$$
|D u|^{p-2}\left(\Delta u+(p-2)|D u|^{-2} \sum_{i, j=1}^{N} D_{i j} u D_{i} D_{j} u\right)=0 ?
$$

Solution. $\Delta u=\operatorname{div}(D u)=0$. Second,

$$
D_{i}\left(|D u|^{p-2} D u_{i}\right)=(p-2) / 2\left(\sum_{j=1}^{N}\left|D u_{j}\right|^{2}\right)^{\frac{p-2}{2}-1} \sum_{j=1}^{N} 2 D_{j} u D_{i j} u D_{i} u+|D u|^{p-2} D_{i i} u
$$

for $i=1, \ldots, N$, and so

$$
\operatorname{div}\left(|D u|^{p-2} D u\right)=|D u|^{p-2}\left(\Delta u+(p-2)|D u|^{-2} \sum_{i, j=1}^{N} D_{i j} u D_{i} u D_{j} u\right.
$$

6. Let u be a continuous function in $\Omega \subset \mathbb{R}^{N}$. Suppose that

$$
\int_{\Omega} u \varphi d x=0
$$

for all $\varphi \in C_{0}^{\infty}(\Omega)$. Show that $u(x)=0$ for all $x \in \Omega$.
Proof. Suppose on the contrary that $u\left(x_{0}\right)>0$ for some $x_{0} \in \Omega$. By continuity there exists $r>0$ such that $u>0$ in $B\left(x_{0}, 2 r\right)$. Take a function $\varphi \in C_{0}^{\infty}\left(B\left(x_{0}, r\right)\right)$ such that $\varphi\left(x_{0}\right)>0$. Then

$$
0=\int_{\Omega} u \varphi d x=\int_{B\left(x_{0}, r\right)} u \varphi d x>0,
$$

which is a contradiction. The function φ can be defined by setting

$$
\varphi(x)=\eta\left(\frac{x-x_{0}}{r}\right),
$$

where

$$
\eta(x)= \begin{cases}e^{-\frac{1}{1-|x|^{2}}} & \text { if }|x|<1 \\ 0 & \text { if }|x| \geq 0\end{cases}
$$

