DEMO 2,
 Partial Differential Equations, 2021

In problems 1-4, solve $u=u(x, y)$.
1.

$$
\left\{\begin{array}{l}
2 \partial_{x} u+3 \partial_{y} u=0 \\
u(0, y)=\sin y
\end{array}\right.
$$

2.

$$
\left\{\begin{array}{l}
2 \partial_{x} u+3 \partial_{y} u=x \\
u(0, y)=y
\end{array}\right.
$$

3.

$$
\left\{\begin{array}{l}
2 \partial_{x} u+3 \partial_{y} u=x u \\
u(0, y)=y
\end{array}\right.
$$

4.

$$
\partial_{x} u+x \partial_{y} u=0
$$

5. Let f and g be two given continuous functions and let c be a constant. Solve the following initial value problem:

$$
\left\{\begin{array}{l}
f(y) \partial_{x} u+\partial_{y} u=c u \\
u(x, 0)=g(x)
\end{array}\right.
$$

[Hint: the solution should be of the form $u(x, y)=e^{c y} g\left(x-\int_{0}^{y} f(z) d z\right)$.]
6. Suppose that $u \in C^{1}\left(\mathbb{R}^{2}\right)$ is a solution to

$$
a(x, y) \partial_{x} u+b(x, y) \partial_{y} u=0
$$

Show that for arbitrary $H \in C^{1}(\mathbb{R})$ also $H(u)$ is a solution.

