
1. Solve {
(2, 3) ·Du = 0,

u(0, y) = sin y.
(1)

Proof. Fix a point (x0, y0) ∈ R2. We consider the curve

Γx0,y0 =
{

(x̃(s), ỹ(s)) ∈ R2 : s ∈ R
}

starting from (x0, y0), where {
x̃(s) = x0 + 2s,

ỹ(s) = y0 + 3s.

Then by chain rule we have

d

ds
u(x̃(s), ỹ(s)) = (x̃′(s), ỹ′(s)) ·Du(x̃(s), ỹ(s)) = (2, 3) ·Du(x̃(s), ỹ(s)) = 0,

where the last identity follows from (1). Thus u is constant on the curve Γx0,y0 . Given an
arbitrary point (x, y) ∈ R2, we have (x, y) ∈ Γ0,y−3x/2 since

x̃(x/2) = 0 + 2 · (x/2) = x and ỹ(x/2) = (y − 3x/2) + 3 · (x/2) = y.

Thus by the initial condition in (1) we obtain

u(x, y)

u const. on
Γ0,y−3x/2︸ ︷︷ ︸

= u(0, y − 3x/2) = sin(y − 3x/2).

2. Solve {
(2, 3) ·Du = x,

u(0, y) = y.
(2)

Proof. Fix a point (x0, y0). Consider the same curve as in problem 1

Γx0,y0 =
{

(x̃(s), ỹ(s)) ∈ R2 : s ∈ R
}

starting from (x0, y0), where {
x̃(s) = x0 + 2s,

ỹ(s) = y0 + 3s.

Denote z(s) := u(x̃(s), ỹ(s)). Then by chain rule we have this time

d

ds
z(s) =

d

ds
u(x̃(s), ỹ(s)) = (x̃′(s), ỹ′(s)) ·Du(x̃(s), ỹ(s))

= x̃(s) = x0 + 2s.

Thus by the fundamental lemma of calculus

z(s) = z(0) +

∫ s

0

x0 + 2r dr = z(0) + sx0 + s2 for all s ∈ R,
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which by de�nition of z can be written as

u(x̃(s), ỹ(s)) = u(x0, y0) + sx0 + s2 for all s ∈ R. (3)

On the other hand, given an arbitrary point (x, y) ∈ R2, we have (x, y) ∈ Γ0,y−3x/2 since

x̃(x/2) = 0 + 2 · (x/2) = x and ỹ(x/2) = (y − 3x/2) + 3 · (x/2) = y.

Therefore from (3) we obtain

u(x, y) = u(x̃(x/2), ỹ(x/2)) = u(x0, y0) + sx0 + s2

= u(0, y − 3x/2) + 0 · (x/2) + (x/2)2

= y − 3x/2 + x2/4,

where the last identity follows from the initial condition in (2).

3. Solve {
(2, 3) ·Du = xu,

u(0, y) = y.

Proof. Fix a point (0, y0). Again we consider the same curve as in problem 1

Γ0,y0 =
{

(x̃(s), ỹ(s)) ∈ R2 : s ∈ R
}

starting from (0, y0), where {
x̃(s) = 2s,

ỹ(s) = y0 + 3s.

Denote z(s) := u(x̃(s), ỹ(s)). Then by chain rule we have this time

d

ds
z(s) =

d

ds
u(x̃(s), ỹ(s)) = (x̃′(s), ỹ′(s)) ·Du(x̃(s), ỹ(s))

= x̃(s)u(x̃(s), ỹ(s)) = 2sz(s).

This is solved by z(s) = ces
2
whenever c ∈ R, so that

u(x̃(s), ỹ(s)) = ces
2

for all s ∈ R. (4)

On the other hand, given an arbitrary point (x, y) ∈ R2, we have (x, y) ∈ Γ0,y−3x/2 since

x̃(x/2) = 2 · (x/2) = x and ỹ(x/2) = (y − 3x/2) + 3 · (x/2) = y.

Then by the initial condition and (4) we have

y − 3x/2 = u(0, y − 3x/2) = u(x̃(0), ỹ(0)) = ce0
2

= c,

so that c = y − 3x/2. Thus

u(x, y) = u(x̃(x/2), ỹ(x/2)) = ce(x/2)
2

= (y − 3x/2)ex
2/4.
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4. Solve
(1, x) ·Du = 0. (5)

Proof. Fix a point (x0, y0) ∈ R2. We consider the curve

Γx0,y0 =
{

(x̃(s), ỹ(s)) ∈ R2 : s ∈ R2
}
,

where {
x̃′(s) = 1, x̃(0) = x0,

ỹ′(s) = x̃(s), ỹ(0) = y0.
(6)

We set z(s) = u(x̃(s), ỹ(s)). Then

d

ds
z(s) =(x̃′(s), ỹ′(s)) ·Du(x̃(s), ỹ(s)) = (1, x̃(s)) ·Du(x̃(s), ỹ(s)) = 0.

The solutions to the system (6) are{
x̃(s) = s + x0,

ỹ(s) = s2/2 + x0s + y0.

Given (x, y) ∈ R2, we have u constant on the curve Γx,y. Thus

u(x, y) = u(x̃(−x), ỹ(−x)) = u(−x + x, x2/2− x2 + y)

= u(0, y − x2/2)

=: f(y − x2/2).

In other words, any solution to (5) can be written as u(x, y) = f(y − x2/2) for some f ∈
C1(R).

5. Let f and g be two given continuous functions and let c be a constant. Solve the initial value
problem {

(f(y), 1) ·Du = cu,

u(x, 0) = g(x).

Proof. Let (x0, y0) ∈ R2. We consider the curve

Γx0,y0 =
{

(x̃(s), ỹ(s)) ∈ R2 : s ∈ R2
}
,

where {
x̃′(s) = f(ỹ(s)), x̃(0) = x0,

ỹ′(s) = 1 ỹ(0) = x0.
(7)

The solution to the system (7) are{
x̃(s) =

∫ s

0
f(r) dr + x0

ỹ(s) = s + y0.
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We de�ne z(s) = u(x̃(s), ỹ(s)). Then

d

ds
z(s) =(x̃′(s), ỹ′(s)) ·Du(x̃(s), ỹ(s))

=(f(ỹ(s)), 1) ·Du(x̃(s), ỹ(s)) = cu(x̃(s), ỹ(s)) = cz(s).

This is solved by z(s) = aecs whenever a ∈ R, i.e.

u(x̃(s), ỹ(s)) = aecs for all s ∈ R. (8)

On the other hand an arbitrary (x, y) ∈ R2 lies on the curve Γx0,y0 , where x0 = x−
∫ y

0
f(r) dr

and y0 = 0, since

x̃(y) =

∫ y

0

f(r) dr + x0 = x, and ỹ(y) = y + 0 = y.

Then in particular by the initial condition

u(x̃(0), ỹ(0)) = u(x0, y0) = u(x−
∫ y

0

f(r) dr, 0) = g(x−
∫ y

0

f(r) dr)

and on the other hand by (8)

u(x̃(0), ỹ(0)) = aec·0 = a

so that a = g(x−
∫ y

0
f(r) dr). Hence, using (8) again we obtain

u(x, y) = u(x̃(y), ỹ(y)) = aecy = g(x−
∫ y

0

f(r) dr)ecy.

6. Suppose that u ∈ C1(R2) is a solution to

(a(x, y), b(x, y)) ·Du = 0.

Show that for arbitrary H ∈ C1(R) also H(u) is a solution.

Proof. By the chain rule
D(H(u)) = H ′(u)Du.

Thus

(a(x, y), b(x, y)) ·D(H(u)) =(a(x, y), b(x, y)) · (H ′(u)Du)

=H ′(u)((a(x, y), b(x, y)) ·Du) = 0

i.e. H(u) is also a solution.
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