1. Prove that if f is continuous, then

$$
f(x)=\lim _{r \rightarrow 0} f_{B(x, r)} f d y=\lim _{r \rightarrow 0} f_{\partial B(x, r)} f d S
$$

Proof. Since f is continuous, for any $\varepsilon>0$ there exists $r>0$ such that

$$
|f(y)-f(x)| \leq \varepsilon \quad \text { for all } y \in B(x, r)
$$

Thus

$$
\begin{aligned}
\left|f_{B(x, r)} f(y) d y-f(x)\right| & =\left|f_{B(x, r)} f(y)-f(x) d y\right| \\
& \leq f_{B(x, r)}|f(y)-f(x)| d y \\
& \leq f_{B(x, r)} \varepsilon d y=\varepsilon .
\end{aligned}
$$

This means that $\lim _{r \rightarrow 0} f_{B(x, r)} f(x) d y=f(x)$. The proof of the second identity is completely analogical.
2. When $N \geq 3$, find a solution to

$$
\begin{cases}\Delta u=0 & \text { in } B(0,2) \backslash \bar{B}(0,1) \tag{1}\\ u=0 & \text { on } \partial B(0,2), \\ u=1 & \text { on } \partial B(0,1) .\end{cases}
$$

Proof. Recall that when $N \geq 3$, the fundamental solution takes the form

$$
\Phi(x)=c_{N} \frac{1}{|x|^{N-2}}
$$

and that it solves

$$
\Delta \Phi=0 \quad \text { in } \mathbb{R}^{N} \backslash\{0\} .
$$

The idea is to scale and lift Φ so that it solves the Dirichlet problem (1). That is, we set

$$
u(x):=a \Phi(x)+c
$$

for some $a, c \in \mathbb{R}$. Then $\Delta u=0$ in $B(0,2) \backslash \bar{B}(0,1)$ and we need to take a and c so that

$$
\begin{cases}u=0 & \text { on } \partial B(0,2) \\ u=1 & \text { on } \partial B(0,1)\end{cases}
$$

i.e.

$$
\left\{\begin{array}{l}
\frac{a c_{N}}{2^{N-2}}+c=0 \\
\frac{a c N_{N}}{1^{N-2}}+c=1
\end{array}\right.
$$

This leads to $a=\frac{1-c}{c_{N}}$ so that

$$
\begin{aligned}
& \frac{(1-c)}{2^{N-2}}+c=0 \\
\Longleftrightarrow & c\left(1-2^{2-N}\right)=-2^{2-N} \\
\Longleftrightarrow & c=\frac{2^{2-N}}{2^{2-N}-1}
\end{aligned}
$$

and

$$
a=c_{N}^{-1}\left(1-\frac{2^{2-N}}{2^{2-N}-1}\right)=-c_{N}^{-1}\left(\frac{1}{2^{2-N}-1}\right) .
$$

3. Find a solution to

$$
\begin{cases}\Delta u=1 & \text { on } B(0,1) \\ u=0 & \text { on } \partial B(0,1)\end{cases}
$$

Proof. Suppose first that $N=1$. Then $\Delta u=u^{\prime \prime}=1$ implies $u=a x^{2}+c=\frac{1}{2} x^{2}-\frac{1}{2}$. Suppose then that $N \geq 2$ and consider

$$
u(x)=v(|x|)=v(r(x))
$$

for some $v:[0, \infty) \rightarrow \mathbb{R}, r(x)=|x|$. Then (see derivation of the fundamental solution)

$$
1=\Delta u(x)=v^{\prime \prime}(r)+\frac{N-1}{r} v^{\prime}(r),
$$

i.e. v must solve

$$
\begin{equation*}
r v^{\prime \prime}(r)+(N-1) v^{\prime}(r)=r \quad \text { for all } r \in[0,1) \tag{2}
\end{equation*}
$$

Inspired by the solution when $N=1$, we guess that the solution has the form

$$
v(r)=a r^{2}+b r+c
$$

for some $a, b, c \in \mathbb{R}$. From (2) we obtain for all $r \in[0,1)$

$$
\begin{aligned}
& 2 a r+(N-1)(2 a r+b)=r \\
\Longleftrightarrow & 2 a r N+(N-1) b=r
\end{aligned}
$$

so that $a=\frac{1}{2 N}$ and $b=0$. To satisfy the boundary condition we take $c=-\frac{1}{2 N}$. Thus the solution takes the form

$$
u(x)=\frac{|x|^{2}}{2 N}-\frac{1}{2 N}
$$

4. Let $f \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$

$$
u(x):=(\Phi * f)(x):=\int_{\mathbb{R}^{N}} \Phi(x-y) f(y) d y
$$

Show that $\partial_{x_{i}} u \in C\left(\mathbb{R}^{N}\right)$.

Proof. See the first part of the proof of Theorem 4.6.
5. Prove that Laplace's equation

$$
\Delta u=0
$$

is rotation invariant: if Q is an orthogonal $N \times N$ matrix and we define

$$
v(x)=u(Q x)
$$

then $\Delta v(x)=0$.
Proof. Let

$$
v(x)=u(Q x)
$$

We have (see below)

$$
\begin{equation*}
D^{2} v(x)=Q^{T} D^{2} u(Q x) Q \tag{3}
\end{equation*}
$$

Thus, since $Q Q^{T}=I$, we get

$$
\Delta v(x)=\operatorname{tr} D^{2} v(x)=\operatorname{tr}\left(Q^{T} D^{2} u(Q x) Q\right)=\operatorname{tr}\left(Q Q^{T} D^{2} u(Q x)\right)=\operatorname{tr} D^{2} u(Q x)=\Delta u(Q x)=0
$$

where we used the cyclic property of trace:

$$
\operatorname{tr}(A B C)=\operatorname{tr}(C A B)
$$

It remains to verify (3). Given a matrix A, denote by A_{i} the i :th row (so that $\left(A^{T}\right)_{i}$ is the i :th column). By the chain rule

$$
D v(x)=D(u(Q x))=J_{u}(x) J_{Q x}(x)=D u(Q x) Q
$$

i.e. for $j=1, \ldots, N$ we have

$$
D_{j} v(x)=D u(Q x) \cdot Q_{j}^{T}=\sum_{k=1}^{N} D_{k} u(Q x)\left(Q_{j}^{T}\right)_{k}=\sum_{k=1}^{N} D_{k} u(Q x) Q_{k j}
$$

Thus

$$
\begin{array}{rlr}
D_{i j} v(x)=D_{i}\left(D_{j} v(x)\right) & =D_{i}\left(\sum_{k=1}^{N} D_{k} u(Q x) Q_{k j}\right) & \mid \text { chain rule again } \\
& =\sum_{k=1}^{N} D_{i}\left(D_{k} u(Q x)\right) Q_{k j} & \\
& =\sum_{k=1}^{N}\left(\sum_{l=1}^{N} D_{l} D_{k} u(Q x) Q_{l i}\right) Q_{k j} \\
& =\sum_{k, l=1}^{N} D_{l k} u(Q x) Q_{l i} Q_{k j} \\
& =\left(Q^{T} D^{2} u(Q x) Q\right)_{i j}
\end{array}
$$

where the last identity can be checked by computing out the matrix product.
6. Let $u \in C^{1}\left(\mathbb{R}^{N}\right)$ and

$$
\varphi(r)=f_{\partial B(x, r)} u(y) d S(y)
$$

Prove that

$$
\varphi^{\prime}(r)=f_{\partial B(0,1)} D u(x+r y) \cdot y d S(y)
$$

Proof. Rewrite φ by changing variables

$$
\varphi(r)=f_{\partial B(0,1)} u(x+r y) d S(y)
$$

Now fix $r>0$ and let $h \in(0,1)$. Consider the difference quotient

$$
\frac{\varphi(r+h)-\varphi(r)}{h}=f_{\partial B(0,1)} \frac{u(x+r y+h y)-u(x+r y)}{h} d S(y)
$$

By mean value theorem there exists a vector $\xi \in[x+r y, x+r y+h y]$ such that

$$
\frac{u(x+r y+h y)-u(x+r y)}{h}=D u(\xi) \cdot y .
$$

Thus

$$
\begin{aligned}
& \left|f_{\partial B(0,1)} \frac{u(x+r y+h y)-u(x+r y)}{h} d S(y)-f_{\partial B(0,1)} D u(x+r y) \cdot y d S(y)\right| \\
& =\left|f_{\partial B(0,1)}(D u(\xi)-D u(x+r y)) \cdot y d S(y)\right| \quad \mid \xi \in \bar{B}_{h}(x+r y) \subset B_{r+1}(x) \\
& \leq f_{\partial B(0,1)} \sup _{\substack{\eta, \zeta \in B_{r+1}(x) \\
|\eta-\zeta|<h}}|D u(\eta)-D(\zeta)| \\
& \rightarrow 0
\end{aligned}
$$

as $h \rightarrow 0$ since $u \in C^{1}\left(\mathbb{R}^{N}\right)$ implies that $D u$ is uniformly continuous in $B_{r+1}(x)$.

