1. Prove that if f is continuous, then

f(z) = lim fdy = lim fds.

r—0 B(z,r) r—0 OB(z,r)
Proof. Since f is continuous, for any € > 0 there exists r > 0 such that
F@) - f@) <c forall y € Bla,r).

Thus

][ ) dy — f() ][ f(y) — f(x)dy
B(z,r) B(z,r)

< ][ )= ) dy

§][ edy =e.
B(z,r)

This means that lim,_, fB(x " f(z)dy = f(x). The proof of the second identity is completely
analogical. O]

2. When N > 3, find a solution to

Au=0 in B(0,2)\ B(0,1)
u=0 on 0B(0,2), (1)
u=1 on0B(0,1).

Proof. Recall that when N > 3, the fundamental solution takes the form

1
NI N—2
|z]

d(x)=c

and that it solves
A® =0 in RV {0}.

The idea is to scale and lift ® so that it solves the Dirichlet problem (1). That is, we set
u(zx) :=ad®(x) + ¢

for some a,c € R. Then Au = 0in B(0,2)\ B(0,1) and we need to take a and ¢ so that

u=0 on 9B(0,2)
u=1 on 0B(0,1)

l.e.
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This leads to a = 10;; so that

(1-9

SN2 +c=0
= (1 -227N) = 227N
22—N
T

and

22N 1

_ 1 _ -1

. Find a solution to

Au=1 on B(0,1),
u=0 on0B(0,1).

Proof. Suppose first that N = 1. Then Au = v” = 1 implies u = az®+c = 12> —1 . Suppose
then that N > 2 and consider

u(z) = v(|z]) = v(r(z))

for some v : [0,00) = R, r(z) = |z|. Then (see derivation of the fundamental solution)

N-1,

1= Au(z) =0"(r) + v'(r),

r

i.e. v must solve
" (r)+ (N —1)'(r)=r forallrel0,1). (2)

Inspired by the solution when N = 1, we guess that the solution has the form
v(r) =ar’ +br+c
for some a,b,c € R. From (2) we obtain for all r € [0,1)

2ar + (N —1)(2ar +b) =r
< 2arN+ (N -1)b=r

so that a = 55 and b = 0. To satisfy the boundary condition we take ¢ = —55. Thus the
solution takes the form
(2) |z |? 1
wz) = e — —.
2N 2N

. Let f € C(RY)

Show that d,,u € C(RY).



Proof. See the first part of the proof of Theorem 4.6. O

. Prove that Laplace’s equation
Au=0

is rotation invariant: if ) is an orthogonal N x N matrix and we define

v(z) = u(Qu),
then Av(z) = 0.
Proof. Let
v(z) = u(Qx).
We have (see below)
D2(x) = Q" D?*u(Qr)Q. (3)

Thus, since QQT = I, we get
Av(z) = trD?(z) = r(Q” D2u(Q)Q) = r(QQ” D*u(Qx)) = trD*u(Qx) = Au(Qx) = 0,
where we used the cyclic property of trace:
tr(ABC) = tr(CAB).

It remains to verify (3). Given a matrix A, denote by A; the i:th row (so that (A7), is the
i:th column). By the chain rule

Du(z) = D(u(Qx)) = Ju(x)Jgu(r) = Du(Qx)Q,

ie. for j=1,..., N we have
N N
Djv(z) = Du(Qx) - Qf =Y Dyu(Qx)(Q) )k = > Dru(Qx)Qy;-
k=1 k=1
Thus

Dijv(a:) = Di<DjU =D; ZDku Q:E Qk])
k=1

D;(Dyu(Qx))Qy; chain rule again
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Z D Dku QSU le)ij
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Mz

o

=1

N
= Z Dy u(Qr)QuiQy;

k,l=1
= (Q"D*u(Qx)Q)y,

where the last identity can be checked by computing out the matrix product. O]
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6. Let u € C1(RY) and
o) =  ul)ds).
OB (z,r)

Prove that
©'(r) = ][ Du(x + ry) - ydS(y).
9B(0,1)

Proof. Rewrite ¢ by changing variables

¢m=ﬁmmwwwww@>

Now fix 7 > 0 and let h € (0,1). Consider the difference quotient

o(r+h) —o(r) :][ u(z +ry + hy) — u(z + ry) d5(y).
8B(0,1)

h h
By mean value theorem there exists a vector & € [v + ry,x + ry + hy| such that

u(x+ry+hz)—u(x+ry) _ Du() -y,

Thus

u(x +ry + hy) —u(x +r
f o M Z ) gy - f  Dute ) -yasty)
0B(0,1) 0B(0,1)

]éB(O 1)(Du(f) — Du(z +1y)) - de(y)‘ ‘5 € Bu(z + ry) C Byja(x)

gf sup  |Du(n) — D(C)|
0B(0,1) n,(€Br+1(2)
In—¢I<h

—0

as h — 0 since u € C*(RY) implies that Du is uniformly continuous in B, ().



