
1. Prove that if f is continuous, then

f(x) = lim
r→0
−
∫
B(x,r)

f dy = lim
r→0
−
∫
∂B(x,r)

fdS.

Proof. Since f is continuous, for any ε > 0 there exists r > 0 such that

|f(y)− f(x)| ≤ ε for all y ∈ B(x, r).

Thus ∣∣∣∣−∫
B(x,r)

f(y) dy − f(x)

∣∣∣∣ =

∣∣∣∣−∫
B(x,r)

f(y)− f(x) dy

∣∣∣∣
≤ −
∫
B(x,r)

|f(y)− f(x)| dy

≤ −
∫
B(x,r)

ε dy = ε.

This means that limr→0 −
∫
B(x,r)

f(x) dy = f(x). The proof of the second identity is completely
analogical.

2. When N ≥ 3, �nd a solution to
∆u = 0 in B(0, 2) \B(0, 1)

u = 0 on ∂B(0, 2),

u = 1 on ∂B(0, 1).

(1)

Proof. Recall that when N ≥ 3, the fundamental solution takes the form

Φ(x) = cN
1

|x|N−2

and that it solves
∆Φ = 0 in RN \ {0} .

The idea is to scale and lift Φ so that it solves the Dirichlet problem (1). That is, we set

u(x) := aΦ(x) + c

for some a, c ∈ R. Then ∆u = 0 in B(0, 2) \B(0, 1) and we need to take a and c so that{
u = 0 on ∂B(0, 2)

u = 1 on ∂B(0, 1)

i.e. {
acN
2N−2 + c = 0,
acN
1N−2 + c = 1.

1



This leads to a = 1−c
cN

so that

(1− c)
2N−2

+ c = 0

⇐⇒ c(1− 22−N) = −22−N

⇐⇒ c =
22−N

22−N − 1

and

a = c−1N (1− 22−N

22−N − 1
) = −c−1N (

1

22−N − 1
).

3. Find a solution to {
∆u = 1 on B(0, 1),

u = 0 on ∂B(0, 1).

Proof. Suppose �rst that N = 1. Then ∆u = u′′ = 1 implies u = ax2+c = 1
2
x2− 1

2
. Suppose

then that N ≥ 2 and consider

u(x) = v(|x|) = v(r(x))

for some v : [0,∞)→ R, r(x) = |x|. Then (see derivation of the fundamental solution)

1 = ∆u(x) = v′′(r) +
N − 1

r
v′(r),

i.e. v must solve
rv′′(r) + (N − 1)v′(r) = r for all r ∈ [0, 1). (2)

Inspired by the solution when N = 1, we guess that the solution has the form

v(r) = ar2 + br + c

for some a, b, c ∈ R. From (2) we obtain for all r ∈ [0, 1)

2ar + (N − 1)(2ar + b) = r

⇐⇒ 2arN + (N − 1)b = r

so that a = 1
2N

and b = 0. To satisfy the boundary condition we take c = − 1
2N

. Thus the
solution takes the form

u(x) =
|x|2

2N
− 1

2N
.

4. Let f ∈ C∞0 (RN)

u(x) := (Φ ∗ f)(x) :=

∫
RN

Φ(x− y)f(y) dy.

Show that ∂xiu ∈ C(RN).
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Proof. See the �rst part of the proof of Theorem 4.6.

5. Prove that Laplace's equation
∆u = 0

is rotation invariant: if Q is an orthogonal N ×N matrix and we de�ne

v(x) = u(Qx),

then ∆v(x) = 0.

Proof. Let
v(x) = u(Qx).

We have (see below)
D2v(x) = QTD2u(Qx)Q. (3)

Thus, since QQT = I, we get

∆v(x) = trD2v(x) = tr(QTD2u(Qx)Q) = tr(QQTD2u(Qx)) = trD2u(Qx) = ∆u(Qx) = 0,

where we used the cyclic property of trace:

tr(ABC) = tr(CAB).

It remains to verify (3). Given a matrix A, denote by Ai the i:th row (so that (AT )i is the
i:th column). By the chain rule

Dv(x) = D(u(Qx)) = Ju(x)JQx(x) = Du(Qx)Q,

i.e. for j = 1, . . . , N we have

Djv(x) = Du(Qx) ·QT
j =

N∑
k=1

Dku(Qx)(QT
j )k =

N∑
k=1

Dku(Qx)Qkj.

Thus

Dijv(x) = Di(Djv(x)) = Di(
N∑
k=1

Dku(Qx)Qkj)

=
N∑
k=1

Di(Dku(Qx))Qkj

∣∣∣chain rule again

=
N∑
k=1

(
N∑
l=1

DlDku(Qx)Qli)Qkj

=
N∑

k,l=1

Dlku(Qx)QliQkj

= (QTD2u(Qx)Q)ij,

where the last identity can be checked by computing out the matrix product.
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6. Let u ∈ C1(RN) and

ϕ(r) = −
∫
∂B(x,r)

u(y)dS(y).

Prove that

ϕ′(r) = −
∫
∂B(0,1)

Du(x+ ry) · ydS(y).

Proof. Rewrite ϕ by changing variables

ϕ(r) = −
∫
∂B(0,1)

u(x+ ry) dS(y).

Now �x r > 0 and let h ∈ (0, 1). Consider the di�erence quotient

ϕ(r + h)− ϕ(r)

h
= −
∫
∂B(0,1)

u(x+ ry + hy)− u(x+ ry)

h
dS(y).

By mean value theorem there exists a vector ξ ∈ [x+ ry, x+ ry + hy] such that

u(x+ ry + hy)− u(x+ ry)

h
= Du(ξ) · y.

Thus ∣∣∣∣−∫
∂B(0,1)

u(x+ ry + hy)− u(x+ ry)

h
dS(y)−−

∫
∂B(0,1)

Du(x+ ry) · y dS(y)

∣∣∣∣
=

∣∣∣∣−∫
∂B(0,1)

(Du(ξ)−Du(x+ ry)) · y dS(y)

∣∣∣∣ ∣∣∣ξ ∈ Bh(x+ ry) ⊂ Br+1(x)

≤ −
∫
∂B(0,1)

sup
η,ζ∈Br+1(x)
|η−ζ|<h

|Du(η)−D(ζ)|

→ 0

as h→ 0 since u ∈ C1(RN) implies that Du is uniformly continuous in Br+1(x).
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