1. Let $\Omega \subset \mathbb{R}^{N}$ be a bounded domain. Suppose that $u \in C^{2}(\Omega) \cap C(\bar{\Omega})$ satisfies

$$
-\Delta u \leq 0 \quad \text { in } \Omega
$$

Prove that
(a)

$$
u(x) \leq f_{B(x, r)} u(y) d y \quad \text { for all } B(x, r) \Subset \Omega,
$$

(b)

$$
\max _{\bar{\Omega}} u=\max _{\partial \Omega} u
$$

Proof. (a) Let $x \in \Omega$. Define

$$
\phi(r):=f_{\partial B(x, r)} \phi(y) d S(y)
$$

for all $0<r<\operatorname{dist}(x, \partial \Omega)$. Then (see proof of Theorem 4.13)

$$
\phi^{\prime}(r)=f_{B(x, r)} \Delta u(y) d y \geq 0
$$

Thus by the fundamental theorem of calculus we have for any $\varepsilon \in(0, r)$

$$
f_{B(x, r)} u(y) d y=\phi(r)=\phi(\varepsilon)+\int_{\varepsilon}^{r} \phi^{\prime}(s) d s \geq \phi(\varepsilon)=f_{B(x, \varepsilon)} u(y) d y
$$

Since the right-hand side converges to $u(x)$ as $\varepsilon \rightarrow 0$, we obtain the claim.
(b) Suppose that there is $x_{0} \in \Omega$ such that $u\left(x_{0}\right)=M$. Then

$$
M=u\left(x_{0}\right) \leq \int_{B(x, r)} u(y) d y
$$

This is possible only if $u \equiv M$ in $B(x, r)$. Since Ω is open and connected, it is path-connected. Thus we can connect any two points in Ω with a chain of balls, and so it follows that $u \equiv M$ in Ω.
2. Let $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ be a smooth and convex function. Assume that u is harmonic in Ω. Let $v=\varphi(u)$. Prove that

$$
-\Delta v \leq 0 \quad \text { in } \Omega
$$

Proof. Given vectors $\xi, \eta \in \mathbb{R}^{N}$, we denote by $\xi \otimes \eta$ the $N \times N$ matrix whose (i, j)-entry is $\xi_{i} \eta_{j}$. Then by chain rule

$$
D v=\varphi^{\prime}(u) D u \quad \text { and } \quad D^{2} v=\varphi^{\prime \prime}(u) D u \otimes D u+\varphi^{\prime}(u) D^{2} u
$$

Thus

$$
\begin{aligned}
-\Delta v=-\operatorname{tr}\left(D^{2} v\right) & =-\sum_{i=1}^{N}\left(\varphi^{\prime \prime}(u) D_{i} u D_{i} u+\varphi^{\prime}(u) D_{i i} u\right) \\
& =-\sum_{i=1}^{N} \varphi^{\prime \prime}(u)\left(D_{i} u\right)^{2}+\varphi^{\prime}(u) D_{i i} u \\
& =-\varphi^{\prime \prime}(u)|D u|^{2}-\varphi^{\prime}(u) \Delta u \\
& \leq-\varphi^{\prime} \Delta u \\
& =0
\end{aligned}
$$

3. Assume that u is harmonic in Ω. Let $v=|D u|^{2}$. Prove that

$$
-\Delta v \leq 0 \quad \text { in } \Omega
$$

Proof. Recall that harmonic functions are smooth by Theorem 4.20. Therefore we can change the order of differentiation. Consequently for any $i \in\{1, \ldots, N\}$ we have

$$
\Delta\left(D_{i} u\right)=\sum_{k=1}^{N} D_{k k} D_{i} u=\sum_{k=1}^{N} D_{i}\left(D_{k k} u\right)=D_{i} \sum_{k=1}^{N} D_{k k} u=D_{i}(\Delta u)=0
$$

so that $D_{i} u$ is harmonic. We now let $\varphi(s)=s^{2}$. Then φ is convex and smooth, and thus Problem 2 implies that

$$
\Delta\left(\varphi\left(D_{i} u\right)\right)=0
$$

i.e. $\varphi\left(D_{i} u\right)$ is harmonic. Consequently

$$
-\Delta v=-\Delta\left(\sum_{i=1}^{N}\left(D_{i} u\right)^{2}\right)=\sum_{i=1}^{N} \Delta\left(\left(D_{i} u\right)^{2}\right)=\sum_{i=1}^{N} \Delta\left(\varphi\left(D_{i} u\right)\right)=0 .
$$

4. Verify by Direct calculation that

$$
\Phi(x)= \begin{cases}c_{2} \log (|x|), & N=2 \\ c_{N}|x|^{2-N}, & N \geq 3\end{cases}
$$

is harmonic in $\mathbb{R}^{N} \backslash\{0\}$.
Proof. Denote $r(x)=|x|$ so that

$$
\operatorname{Dr}(x)=\frac{x}{|x|} \quad \text { and } \quad D^{2} r(x)=\frac{I}{|x|}-\frac{x \otimes x}{|x|^{3}} .
$$

Set also

$$
\varphi(s)= \begin{cases}c_{2} \log (s), & N=2 \\ c_{N} s^{2-N}, & N \geq 3\end{cases}
$$

so that

$$
\varphi^{\prime}(s)= \begin{cases}\frac{c_{2}}{s}, & N=2 \\ c_{N}(2-N) s^{1-N}, & N \geq 3\end{cases}
$$

and

$$
\varphi^{\prime \prime}(s)= \begin{cases}-\frac{c_{2}}{s^{2}}, & N=2 \\ c_{N}(2-N)(1-N) s^{-N}, & N \geq 3\end{cases}
$$

Then $\Phi(x)=\varphi(r(x))$ and

$$
D^{2} \Phi(x)=\varphi^{\prime \prime}(r(x)) \operatorname{Dr}(x) \otimes \operatorname{Dr}(x)+\varphi^{\prime}(r(x)) D^{2} r(x)
$$

Thus

$$
\begin{aligned}
\Delta \Phi(x) & =\operatorname{tr}\left(\varphi^{\prime \prime}(|x|) \frac{x}{|x|} \otimes \frac{x}{|x|}+\varphi^{\prime}(|x|)\left(\frac{I}{|x|}-\frac{x \otimes x}{|x|^{3}}\right)\right. \\
& =\varphi^{\prime \prime}(|x|) \frac{|x|^{2}}{|x|^{2}}+\varphi^{\prime}(|x|)\left(\frac{N}{|x|}-\frac{|x|^{2}}{|x|^{3}}\right) \\
& =\varphi^{\prime \prime}(|x|)+\varphi^{\prime}(|x|)\left(\frac{N-1}{|x|}\right) \\
& =0
\end{aligned}
$$

5. Let $g \in \mathbb{R}$ and $f:[0, \infty) \rightarrow \mathbb{R}$ be continuous. Prove that if $u \in C^{2}\left(B_{1}\right) \cap C\left(\bar{B}_{1}\right)$ solves

$$
\begin{cases}-\Delta u(x)=f(|x|) & \text { in } B_{1} \tag{1}\\ u(x)=g & \text { on } \partial B_{1}\end{cases}
$$

then u is radially symmetric.
Proof. Fix $x_{0} \in B_{1} \backslash\{0\}$ and let Q be an orthogonal matrix such that $Q x_{0}=\left|x_{0}\right| e_{1}$, where $e_{1}=(1,0, \ldots, 0)$. That is $x \mapsto Q x$ is a rotation of the coordinates that takes x_{0} to $\left|x_{0}\right| e_{1}$. Define

$$
v(x):=u(Q x) .
$$

In exercise 3 , problem 5 , we proved that for all $x \in B_{1}$ we have

$$
D^{2} v(x)=Q^{T} D^{2} u(Q x) Q .
$$

Thus, if $x \in B_{1}$, we have

$$
-\Delta v(x)=-D^{2} u(Q x)=f(|Q x|)=f(|x|),
$$

and if $x \in \partial B_{1}$, we have

$$
v(x)=u(\underbrace{Q x}_{\in \partial B_{1}})=g
$$

That is, v is also a solution to problem (1). But then by uniqueness (Theorem 4.19) we must have $v \equiv u$ and in particular

$$
u\left(x_{0}\right)=v\left(x_{0}\right)=u\left(Q x_{0}\right)=u\left(\left|x_{0}\right| e_{1}\right) .
$$

This implies the radial symmetry of u since x_{0} was arbitrary.
6. Prove that there is a unique solution $u \in C^{2}(B(0,1)) \cap C(\bar{B}(0,1))$ to the boundary value problem

$$
\begin{cases}\Delta u=u^{3} & \text { in } B(0,1) \\ u=0 & \text { on } \partial B(0,1)\end{cases}
$$

Proof. Clearly $v=0$ is a solution. We need to show that it is unique. Suppose on the contrary that there exists a solution $u \in C^{2}(B(0,1)) \cap C(\bar{B}(0,1))$ that does not vanish identically in $B(0,1)$. We may assume that

$$
E_{+}:=\{x \in B(0,1): u(x)>0\} \neq 0
$$

otherwise we consider $-u$. Let F be a connected component of E_{+}. Now we know that

$$
-\Delta u=-u^{3}<0 \quad \text { in } F
$$

and

$$
u=0 \quad \text { on } \partial F .
$$

But then by conclusion (b) in problem 1, we have that

$$
\max _{\bar{F}} u=\max _{\partial F} u=0 .
$$

This is a contradiction since $u>0$ in F.

