1. Let © C RY be a bounded domain. Suppose that u € C?(Q) N C(Q) satisfies
—Au <0 1in Q.
Prove that
(a)
u(x) §]i(m) u(y)dy for all B(z,r) € Q,
(b)

maxu = maxu.
Q a9

Proof. (a) Let x € Q. Define

o(r) = ]{ww) o(y) dS(y)

for all 0 < r < dist(z, 92). Then (see proof of Theorem 4.13)
o) =f  Bu)dyz o
B(z,r)

Thus by the fundamental theorem of calculus we have for any € € (0, r)
L swd=om =9+ [ deaszo@ =1
B(z,r € B(x,e

Since the right-hand side converges to u(x) as € — 0, we obtain the claim.

(b) Suppose that there is zg € 2 such that u(z¢) = M. Then

M = u(zp) < ]l uly) dy.

B(z,r)

This is possible only if u = M in B(z, ). Since € is open and connected, it is path-connected.

Thus we can connect any two points in {2 with a chain of balls, and so it follows that u = M
in €. O

2. Let ¢ : R — R be a smooth and convex function. Assume that u is harmonic in €2. Let
v = p(u). Prove that
—Av <0 in Q.

Proof. Given vectors £, € RY, we denote by £ ®  the N x N matrix whose (i, j)-entry is
&nj. Then by chain rule

Dv = ¢'(u)Du and D?*v = ¢"(u)Du® Du+ ¢ (u)D?u.



Thus
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3. Assume that v is harmonic in . Let v = |Du|’. Prove that

—Av <0 in Q.

Proof. Recall that harmonic functions are smooth by Theorem 4.20. Therefore we can change
the order of differentiation. Consequently for any ¢ € {1,..., N} we have

N N N
A(Diu) = DyDju =Y Di(Dyu) = D; Y _ Dygu = Dy(Au) =0,
k=1 k=1 k=1

so that D;u is harmonic. We now let p(s) = s2.

Problem 2 implies that

Then ¢ is convex and smooth, and thus

A(p(Dyu)) =0,
i.e. p(D;u) is harmonic. Consequently

N N N

4. Verify by Direct calculation that

() = {02 log(|z|), N =2,

is harmonic in RY \ {0}.

Proof. Denote r(x) = |z| so that

Set also



so that

and

Thus
AD(a) = (¢l 7 @ ﬂ + w’(lﬁl)(% - %)
- "<\x|>% 1o |><% - %)
= ¢'(Ja]) +90’(\56|)(N|_| b

. Let g€ Rand f:[0,00) — R be continuous. Prove that if u € C%(B;) N C(B)) solves

{ Au(a) = f(la]) i By "
(x) =g on 0B,

then wu is radially symmetric.

Proof. Fix zg € By \ {0} and let @ be an orthogonal matrix such that Qzo = |x¢| €1, where
er = (1,0,...,0). That is x — Qx is a rotation of the coordinates that takes zo to |zo|e;.
Define

v(x) == u(Qx).
In exercise 3, problem 5, we proved that for all x € By we have
*v(z) = Q" D*u(Q)Q.
Thus, if z € By, we have
—Av(z) = —D*u(Qz) = f(|Qx]) = f(|]),

and if x € 0By, we have
v(z) =u(Qz) =
() = u(Qr)
coB1
That is, v is also a solution to problem (1). But then by uniqueness (Theorem 4.19) we must
have v = u and in particular

u(zg) = v(xg) = u(Qxo) = u(|xo| €1).

This implies the radial symmetry of u since xy was arbitrary. O]
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6. Prove that there is a unique solution u € C?(B(0,1)) N C(B(0,1)) to the boundary value
problem

Au=v* in B(0,1),
u=0 on 0B(0,1).

Proof. Clearly v = 0 is a solution. We need to show that it is unique. Suppose on the contrary
that there exists a solution u € C*(B(0,1)) N C(B(0,1)) that does not vanish identically in
B(0,1). We may assume that

E, :={x € B(0,1) : u(x) > 0} # 0;
otherwise we consider —u. Let F' be a connected component of E,. Now we know that
—Au=—-u*<0 inF

and
u=0 on JF.

But then by conclusion (b) in problem 1, we have that

maxu = maxu = 0.
ol OF

This is a contradiction since v > 0 in F'. O



