
1. Let Ω ⊂ RN be a bounded domain. Suppose that u ∈ C2(Ω) ∩ C(Ω) satis�es

−∆u ≤ 0 in Ω.

Prove that

(a)

u(x) ≤ −
∫
B(x,r)

u(y) dy for all B(x, r) b Ω,

(b)
max

Ω
u = max

∂Ω
u.

Proof. (a) Let x ∈ Ω. De�ne

φ(r) := −
∫
∂B(x,r)

φ(y) dS(y)

for all 0 < r < dist(x, ∂Ω). Then (see proof of Theorem 4.13)

φ′(r) = −
∫
B(x,r)

∆u(y) dy ≥ 0.

Thus by the fundamental theorem of calculus we have for any ε ∈ (0, r)

−
∫
B(x,r)

u(y) dy = φ(r) = φ(ε) +

∫ r

ε

φ′(s) ds ≥ φ(ε) = −
∫
B(x,ε)

u(y) dy.

Since the right-hand side converges to u(x) as ε→ 0, we obtain the claim.

(b) Suppose that there is x0 ∈ Ω such that u(x0) = M . Then

M = u(x0) ≤ −
∫
B(x,r)

u(y) dy.

This is possible only if u ≡M in B(x, r). Since Ω is open and connected, it is path-connected.
Thus we can connect any two points in Ω with a chain of balls, and so it follows that u ≡M
in Ω.

2. Let ϕ : R → R be a smooth and convex function. Assume that u is harmonic in Ω. Let
v = ϕ(u). Prove that

−∆v ≤ 0 in Ω.

Proof. Given vectors ξ, η ∈ RN , we denote by ξ ⊗ η the N ×N matrix whose (i, j)-entry is
ξiηj. Then by chain rule

Dv = ϕ′(u)Du and D2v = ϕ′′(u)Du⊗Du+ ϕ′(u)D2u.
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Thus

−∆v = −tr(D2v) = −
N∑
i=1

(ϕ′′(u)DiuDiu+ ϕ′(u)Diiu)

= −
N∑
i=1

ϕ′′(u)(Diu)2 + ϕ′(u)Diiu

= −ϕ′′(u) |Du|2 − ϕ′(u)∆u

≤ −ϕ′∆u.
= 0.

3. Assume that u is harmonic in Ω. Let v = |Du|2. Prove that

−∆v ≤ 0 in Ω.

Proof. Recall that harmonic functions are smooth by Theorem 4.20. Therefore we can change
the order of di�erentiation. Consequently for any i ∈ {1, . . . , N} we have

∆(Diu) =
N∑
k=1

DkkDiu =
N∑
k=1

Di(Dkku) = Di

N∑
k=1

Dkku = Di(∆u) = 0,

so that Diu is harmonic. We now let ϕ(s) = s2. Then ϕ is convex and smooth, and thus
Problem 2 implies that

∆(ϕ(Diu)) = 0,

i.e. ϕ(Diu) is harmonic. Consequently

−∆v = −∆(
N∑
i=1

(Diu)2) =
N∑
i=1

∆((Diu)2) =
N∑
i=1

∆(ϕ(Diu)) = 0.

4. Verify by Direct calculation that

Φ(x) =

{
c2 log(|x|), N = 2,

cN |x|2−N , N ≥ 3,

is harmonic in RN \ {0}.

Proof. Denote r(x) = |x| so that

Dr(x) =
x

|x|
and D2r(x) =

I

|x|
− x⊗ x
|x|3

.

Set also

ϕ(s) =

{
c2 log(s), N = 2,

cNs
2−N , N ≥ 3,
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so that

ϕ′(s) =

{
c2
s
, N = 2,

cN(2−N)s1−N , N ≥ 3,

and

ϕ′′(s) =

{
− c2

s2
, N = 2,

cN(2−N)(1−N)s−N , N ≥ 3.

Then Φ(x) = ϕ(r(x)) and

D2Φ(x) = ϕ′′(r(x))Dr(x)⊗Dr(x) + ϕ′(r(x))D2r(x).

Thus

∆Φ(x) = tr(ϕ′′(|x|) x
|x|
⊗ x

|x|
+ ϕ′(|x|)( I

|x|
− x⊗ x
|x|3

)

= ϕ′′(|x|) |x|
2

|x|2
+ ϕ′(|x|)(N

|x|
− |x|

2

|x|3
)

= ϕ′′(|x|) + ϕ′(|x|)(N − 1

|x|
)

= 0.

5. Let g ∈ R and f : [0,∞)→ R be continuous. Prove that if u ∈ C2(B1) ∩ C(B1) solves{
−∆u(x) = f(|x|) in B1,

u(x) = g on ∂B1,
(1)

then u is radially symmetric.

Proof. Fix x0 ∈ B1 \ {0} and let Q be an orthogonal matrix such that Qx0 = |x0| e1, where
e1 = (1, 0, . . . , 0). That is x 7→ Qx is a rotation of the coordinates that takes x0 to |x0| e1.
De�ne

v(x) := u(Qx).

In exercise 3, problem 5, we proved that for all x ∈ B1 we have

D2v(x) = QTD2u(Qx)Q.

Thus, if x ∈ B1, we have

−∆v(x) = −D2u(Qx) = f(|Qx|) = f(|x|),

and if x ∈ ∂B1, we have
v(x) = u( Qx︸︷︷︸

∈∂B1

) = g

That is, v is also a solution to problem (1). But then by uniqueness (Theorem 4.19) we must
have v ≡ u and in particular

u(x0) = v(x0) = u(Qx0) = u(|x0| e1).

This implies the radial symmetry of u since x0 was arbitrary.
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6. Prove that there is a unique solution u ∈ C2(B(0, 1)) ∩ C(B(0, 1)) to the boundary value
problem {

∆u = u3 in B(0, 1),

u = 0 on ∂B(0, 1).

Proof. Clearly v = 0 is a solution. We need to show that it is unique. Suppose on the contrary
that there exists a solution u ∈ C2(B(0, 1)) ∩ C(B(0, 1)) that does not vanish identically in
B(0, 1). We may assume that

E+ := {x ∈ B(0, 1) : u(x) > 0} 6= 0;

otherwise we consider −u. Let F be a connected component of E+. Now we know that

−∆u = −u3 < 0 in F

and
u = 0 on ∂F.

But then by conclusion (b) in problem 1, we have that

max
F

u = max
∂F

u = 0.

This is a contradiction since u > 0 in F .
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