1. Prove the following comparison principle: suppose that $u, v \in C^{2}(\Omega) \cap C(\bar{\Omega})$ satisfy $-\Delta v \leq$ $-\Delta u$ in Ω. If $v \leq u$ on $\partial \Omega$, then $v \leq u$ in Ω.

Proof. Let $w=v-u$. Then we have

$$
-\Delta w \leq 0 \quad \text { in } \Omega
$$

By problem 1 in the previous exercises, we have

$$
\max _{\bar{\Omega}} w=\max _{\partial \Omega} w=\max _{\partial \Omega}(v-u) \leq 0 .
$$

Thus $v \leq u$ in Ω.
2. Suppose that $u: \mathbb{R}^{N} \rightarrow \mathbb{R}$ is harmonic and bounded from above. Show that u is constant.

Proof. Let $M:=\sup _{\mathbb{R}^{N}} u$. Then for any $\varepsilon>0$ there is $x_{\varepsilon} \in \mathbb{R}^{N}$ such that

$$
u\left(x_{\varepsilon}\right) \geq M-\varepsilon .
$$

The function $x \mapsto M-u(x)$ is a non-negative harmonic function in \mathbb{R}^{N}. Thus by Harnack's inequality

$$
\sup _{B\left(x_{\varepsilon}, r\right)}(M-u) \leq 3^{N} \inf _{B\left(x_{\varepsilon}, r\right)}(M-u) \leq 3^{N} \varepsilon,
$$

i.e.

$$
M-3^{N} \varepsilon \leq u \leq M \quad \text { in } B\left(x_{\varepsilon}, r\right)
$$

Since this holds for any $r>0$ and ε was arbitrary, we see that $u \equiv M$ in \mathbb{R}^{N}.
3. Let u be a non-negative harmonic function in $\Omega=B(0,1) \backslash\{0\} \subset \mathbb{R}^{N}$. Show that there is a constant c, depending only on N, such that

$$
\max _{\partial B(0, r)} u \leq c \min _{\partial B(0, r)} u
$$

for all $0<r \leq 1 / 2$.
Proof. There is a constant $k \in \mathbb{N}$, depending only on the dimension N, such that

$$
\partial B(0, r) \subset \cup_{i=1}^{k} B\left(x_{i}, r / 8\right),
$$

where $x_{i} \in \partial B(0, r)$. Since $r<1 / 2$, we can use Harnack's inequality in $B\left(x_{i}, r / 4\right)$. Thus

$$
\sup _{B\left(x_{i}, r / 8\right)} u \leq 3^{N} \inf _{B\left(x_{i}, r / 8\right)} u
$$

and so

$$
\max _{\partial B(0, r)} u \leq 3^{k N} \min _{\partial B(0, r)} u
$$

4. Show that Green's function is non-negative.

Proof. Let $\Omega \subset \mathbb{R}^{N}$ be a bounded smooth domain. Green's function in the region Ω is defined as $G: \Omega \times \Omega \rightarrow \mathbb{R}$,

$$
G(x, y):=\Phi(y-x)-\varphi^{x}(y), \quad x, y \in \Omega, x \neq y
$$

where Φ is the fundamental solution to Laplace's equation and $\varphi^{x}: \Omega \rightarrow \mathbb{R}$ solves the Dirichlet problem

$$
\begin{cases}\Delta \varphi^{x}(y)=0, & y \in \Omega \tag{1}\\ \varphi^{x}(y)=\Phi(y-x), & y \in \partial \Omega\end{cases}
$$

We fix $x \in \Omega$. Then it suffices to show that the function

$$
u(y):=\Phi(y-x)-\varphi^{x}(y)
$$

is non-negative in $\Omega \backslash\{x\}$. Since φ^{x} is bounded in Ω by the maximum principle and $\Phi(y-x) \rightarrow$ ∞ as $y \rightarrow x$, we can take $r>0$ so small that

$$
u \geq 0 \quad \text { in } \bar{B}(x, r) \backslash\{x\}
$$

On the other hand, u is harmonic in $\Omega \backslash \bar{B}(x, r)$ and $u=0$ on $\partial \Omega$. That is, we have

$$
\Delta u=0 \quad \text { in } \quad \Omega \backslash \bar{B}(x, r) \quad \text { and } \quad u \geq 0 \quad \text { on } \quad \partial(\Omega \backslash \bar{B}(x, r))
$$

Therefore it follows from the comparison principle that $u \geq 0$ also in $\Omega \backslash B(x, r)$.
5. Derive Green's function and Poisson kernel (i.e. $-\frac{\partial G(x, y)}{\partial \nu}$) for a unit ball when $N=2$.

Proof. The derivation is like in the lecture notes when $N=2$. We have now

$$
\varphi^{x}(y)=\Phi\left(|x|\left(y-x^{*}\right)\right)=c_{2} \log \left(\left(|x|\left(y-x^{*}\right)\right)=c_{2} \log |x-y|,\right.
$$

where we used that $|x|\left(y-x^{*}\right)=|x-y|$ as shown in the lectures. So we still have

$$
\begin{aligned}
D_{y} G(x, y) & =D_{y} \Phi(y-x)-D_{y} \Phi\left(|x|\left(y-x^{*}\right)\right) \\
& =c_{2}\left(\frac{y-x}{|y-x|^{2}}-\frac{|x|\left(|x|\left(y-x^{*}\right)\right)}{\left||x|\left(y-x^{*}\right)\right|^{2}}\right) \\
& =c_{2}(\frac{y-x}{|y-x|^{2}}-\frac{|x|^{2} y-\overbrace{|x|^{2} x^{*}}^{=x}}{|y-x|^{2}}) \\
& =\frac{c_{2} y\left(1-|x|^{2}\right)}{|y-x|^{2}} .
\end{aligned}
$$

The rest of the computation is then the same as in lectures.
6. Let u be a smooth solution, $N \geq 3$, of

$$
\begin{cases}-\Delta u=f & \text { in } B(0,1) \subset \mathbb{R}^{N}, \\ u=g & \text { on } \partial B(0,1) .\end{cases}
$$

Prove that

$$
\max _{\bar{B}(0,1)}|u| \leq c\left(\max _{\partial B(0,1)}|g|+\max _{\bar{B}(0,1)}|f|\right)
$$

where $c>0$ depends only on N.

Proof. We have

$$
u(x)=\int_{\partial B(0,1)} K(x, y) g(y) d S(y)+\int_{B(0,1)} G(x, y) f(y) d y
$$

where $K(x, y)$ is the Poisson kernel for $B(0,1)$

$$
K(x, y)=\frac{1}{N \alpha_{N}} \frac{1-|x|^{2}}{|x-y|^{N}}
$$

and $G(x, y)$ is the Green function for $B(0,1)$. Thus we have that

$$
\begin{aligned}
|u(x)| & \leq \max _{\partial B(0,1)}|g| \overbrace{\int_{\partial B(0,1)} K(x, y) d S(y)}+\max _{B(0,1)}|f| \int_{B(0,1)} G(x, y) d y \\
& \leq \max _{\partial B(0,1)}|g|+\max _{B(0,1)}|f| \int_{B(0,1)} \Phi(x-y) d y \\
& \leq c(N)\left(\max _{\partial B(0,1)}|g|+\max _{B(0,1)}|f|\right) .
\end{aligned}
$$

To see that $\int_{\partial B(0,1)} K(x, y) d S(y)=1$, observe that $v=1$ is a solution to

$$
\begin{cases}\Delta v=0 & \text { in } B(0,1) \\ v=1 & \text { on } \partial B(0,1)\end{cases}
$$

so that by Theorem 4.31 we have

$$
1=-\int_{\partial \Omega} 1 \frac{\partial}{\partial \nu} G(x, y) d S(y)=\int_{\partial \Omega} K(x, y) d S(y)
$$

