
1. Prove the following comparison principle: suppose that u, v ∈ C2(Ω) ∩ C(Ω) satisfy −∆v ≤
−∆u in Ω. If v ≤ u on ∂Ω, then v ≤ u in Ω.

Proof. Let w = v − u. Then we have

−∆w ≤ 0 in Ω.

By problem 1 in the previous exercises, we have

max
Ω

w = max
∂Ω

w = max
∂Ω

(v − u) ≤ 0.

Thus v ≤ u in Ω.

2. Suppose that u : RN → R is harmonic and bounded from above. Show that u is constant.

Proof. Let M := supRN u. Then for any ε > 0 there is xε ∈ RN such that

u(xε) ≥M − ε.

The function x 7→M − u(x) is a non-negative harmonic function in RN . Thus by Harnack's
inequality

sup
B(xε,r)

(M − u) ≤ 3N inf
B(xε,r)

(M − u) ≤ 3Nε,

i.e.
M − 3Nε ≤ u ≤M in B(xε, r).

Since this holds for any r > 0 and ε was arbitrary, we see that u ≡M in RN .

3. Let u be a non-negative harmonic function in Ω = B(0, 1) \ {0} ⊂ RN . Show that there is a
constant c, depending only on N , such that

max
∂B(0,r)

u ≤ c min
∂B(0,r)

u,

for all 0 < r ≤ 1/2.

Proof. There is a constant k ∈ N, depending only on the dimension N , such that

∂B(0, r) ⊂ ∪ki=1B(xi, r/8),

where xi ∈ ∂B(0, r). Since r < 1/2, we can use Harnack's inequality in B(xi, r/4). Thus

sup
B(xi,r/8)

u ≤ 3N inf
B(xi,r/8)

u

and so
max
∂B(0,r)

u ≤ 3kN min
∂B(0,r)

u.

4. Show that Green's function is non-negative.
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Proof. Let Ω ⊂ RN be a bounded smooth domain. Green's function in the region Ω is de�ned
as G : Ω× Ω→ R,

G(x, y) := Φ(y − x)− ϕx(y), x, y ∈ Ω, x 6= y,

where Φ is the fundamental solution to Laplace's equation and ϕx : Ω → R solves the
Dirichlet problem {

∆ϕx(y) = 0, y ∈ Ω,

ϕx(y) = Φ(y − x), y ∈ ∂Ω.
(1)

We �x x ∈ Ω. Then it su�ces to show that the function

u(y) := Φ(y − x)− ϕx(y)

is non-negative in Ω\{x}. Since ϕx is bounded in Ω by the maximum principle and Φ(y−x)→
∞ as y → x, we can take r > 0 so small that

u ≥ 0 in B(x, r) \ {x} .

On the other hand, u is harmonic in Ω \B(x, r) and u = 0 on ∂Ω. That is, we have

∆u = 0 in Ω \B(x, r) and u ≥ 0 on ∂(Ω \B(x, r)).

Therefore it follows from the comparison principle that u ≥ 0 also in Ω \B(x, r).

5. Derive Green's function and Poisson kernel (i.e. −∂G(x,y)
∂ν

) for a unit ball when N = 2.

Proof. The derivation is like in the lecture notes when N = 2. We have now

ϕx(y) = Φ(|x| (y − x∗)) = c2 log((|x| (y − x∗)) = c2 log |x− y| ,

where we used that |x| (y − x∗) = |x− y| as shown in the lectures. So we still have

DyG(x, y) = DyΦ(y − x)−DyΦ(|x| (y − x∗))

= c2(
y − x
|y − x|2

− |x| (|x| (y − x
∗))

||x| (y − x∗)|2
)

= c2(
y − x
|y − x|2

− |x|
2 y −

=x︷ ︸︸ ︷
|x|2 x∗

|y − x|2
)

=
c2y(1− |x|2)

|y − x|2
.

The rest of the computation is then the same as in lectures.

6. Let u be a smooth solution, N ≥ 3, of{
−∆u = f in B(0, 1) ⊂ RN ,

u = g on ∂B(0, 1).

Prove that

max
B(0,1)

|u| ≤ c

(
max
∂B(0,1)

|g|+ max
B(0,1)

|f |
)
,

where c > 0 depends only on N .
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Proof. We have

u(x) =

∫
∂B(0,1)

K(x, y)g(y) dS(y) +

∫
B(0,1)

G(x, y)f(y) dy,

where K(x, y) is the Poisson kernel for B(0, 1)

K(x, y) =
1

NαN

1− |x|2

|x− y|N

and G(x, y) is the Green function for B(0, 1). Thus we have that

|u(x)| ≤ max
∂B(0,1)

|g|

=1︷ ︸︸ ︷∫
∂B(0,1)

K(x, y) dS(y) + max
B(0,1)

|f |
∫
B(0,1)

G(x, y) dy

≤ max
∂B(0,1)

|g|+ max
B(0,1)

|f |
∫
B(0,1)

Φ(x− y) dy

≤c(N)( max
∂B(0,1)

|g|+ max
B(0,1)

|f |).

To see that
∫
∂B(0,1)

K(x, y) dS(y) = 1, observe that v = 1 is a solution to{
∆v = 0 in B(0, 1),

v = 1 on ∂B(0, 1),

so that by Theorem 4.31 we have

1 = −
∫
∂Ω

1
∂

∂ν
G(x, y) dS(y) =

∫
∂Ω

K(x, y) dS(y).
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