1. Prove the following comparison principle: suppose that u,v € C?(2) N C(Q) satisfy —Av <
—Au in Q. If v < w on 0L, then v < u in €.

Proof. Let w = v —u. Then we have
—Aw <0 1in .
By problem 1 in the previous exercises, we have

max w = maxw = max(v — u) < 0.
o) a0 o0

Thus v < win Q. O
2. Suppose that v : RY — R is harmonic and bounded from above. Show that u is constant.
Proof. Let M := supgw u. Then for any € > 0 there is z. € RY such that
u(z:) > M —e.
The function x — M — u(z) is a non-negative harmonic function in RY. Thus by Harnack’s

inequality
sup (M —u) <3V inf (M —u) <3¢,

B(ze,r) B(xe,r)
i.e.
M —3e <u<M in B(z.,r).
Since this holds for any 7 > 0 and € was arbitrary, we see that v = M in RV. O

3. Let u be a non-negative harmonic function in Q = B(0,1) \ {0} € RY. Show that there is a
constant ¢, depending only on N, such that

max v < ¢ min u,
0B(0,r) 0B(0,r)

forall0 <r <1/2.

Proof. There is a constant £ € N, depending only on the dimension N, such that
O0B(0,r) C Ur_ B(x,7/8),

where z; € 0B(0,r). Since r < 1/2, we can use Harnack’s inequality in B(x;,r/4). Thus

sup u<3V inf w
B(z;,r/8) B(zi,r/8)

and so

max u < 3*N min u.
0B(0,r) 0B(0,r)

4. Show that Green’s function is non-negative.
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Proof. Let Q C RY be a bounded smooth domain. Green’s function in the region € is defined
as G: QA xQ—R,

G(z,y) =2y —z) —¢"(y), zyeu#y,
where ® is the fundamental solution to Laplace’s equation and ¢* : 2 — R solves the
Dirichlet problem
{ " (y) = 0, yeq,

" (y) = Py —x), ye N
We fix x € Q. Then it suffices to show that the function
u(y) == ¢(y — ) — ¢"(y)

is non-negative in Q\{z}. Since ¢* is bounded in by the maximum principle and ®(y—x) —
0o as y — x, we can take r > 0 so small that

u>0 in B(z,r)\ {z}.
On the other hand, u is harmonic in Q\ B(z,7) and u = 0 on 9. That is, we have
Au=0 in Q\ B(z,7) and  u>0 on 9(Q\ B(x,r)).

(1)

Therefore it follows from the comparison principle that « > 0 also in Q\ B(z, 7). ]
. Derive Green’s function and Poisson kernel (i.e. —252: y)) for a unit ball when N = 2.

Proof. The derivation is like in the lecture notes when N = 2. We have now

#"(y) = (|z[ (y — 7)) = cxlog((J2| (y — 27)) = calog |z =y,
where we used that |z| (y — 2*) = |z — y| as shown in the lectures. So we still have
D,G(z,y) = Dy®(y — x) — Dy® (|| (y — 7))
y—z |z (x| (y —=7))
2 2 )2
ly =2 lz(y —a)|

=x

—~
y—a _ |y —|of’a’
ea( - )

- 2 2 2
ly — x| ly — x|
ey = JoP)
y—a*
The rest of the computation is then the same as in lectures. O

. Let u be a smooth solution, N > 3, of

—Au=f in B(0,1) C RV,
u=yg on 0B(0,1).

Prove that
max |u| < ¢ | max + max ,
B(0,1) | ’ (83(01 \g\ B(0,1) m)

where ¢ > 0 depends only on N.



Proof. We have
uo)= [ Kl dse)+ [ Gewf)dy
dB(0,1) B(0,1)

where K (z,y) is the Poisson kernel for B(0,1)

11—z

K =

and G(z,y) is the Green function for B(0,1). Thus we have that

=1
A

Ve

< max K ) + max / G(x
|u(z)] 63(01)‘ 9l o5 (z,y)dS 01)| | o) y)d
6B%)§)‘ gl 31)‘f|/01) o dy

<c(N
<c(N)(max |g] + max | f]).

To see that faB(o N K(z,y)dS(y) = 1, observe that v = 1 is a solution to

Av=0 in B(0,1),
v=1 on 0B(0,1),

so that by Theorem 4.31 we have

au G(r,y)dS(y) = | K(x,y)dS(y).
o0 o0



