Demo 7,
 Partial Differential Equations, 2021

1. Write down an explicit formula for a solution of

$$
\begin{cases}\partial_{t} u-\Delta u=f & \text { in } \mathbb{R}^{N} \times(0, \infty) \\ u=g & \text { on } \mathbb{R}^{N} \times\{t=0\}\end{cases}
$$

with suitable assumptions on f, g.
2. Write down an explicit formula for a solution of

$$
\begin{cases}\partial_{t} u-\Delta u+c u=f & \text { in } \mathbb{R}^{N} \times(0, \infty) \\ u=g & \text { on } \mathbb{R}^{N} \times\{t=0\}\end{cases}
$$

where $c \in \mathbb{R}$, and f and g satisfy suitable assumptions.
3. Let $E(0,0, r), r>0$ be the heat ball. Find

$$
\inf \{s<0:(0, s) \in E(0,0, r)\}
$$

4. Let u be a solution to the heat equation in $\mathbb{R}^{N} \times(0, T)$. Show that

$$
v(x, t)=u(x, t)-\frac{\mu}{(T+\varepsilon-t)^{N / 2}} e^{\frac{|x-y|^{2}}{4(T+\varepsilon-t)}}
$$

$\mu \in \mathbb{R}, \varepsilon>0$, is also a solution to the heat equation in $\mathbb{R}^{N} \times(0, T)$.
5. Let $\phi: \mathbb{R} \rightarrow \mathbb{R}$ be smooth and convex. Assume that u solves the heat equation (i.e. $\partial_{t} u-\Delta u=0$) and $v=\phi(u)$. Prove that v is a subsolution to the heat equation (i.e. $\partial_{t} v-\Delta v \leq 0$).
6. Comparison principle: Assume that u and v are solutions to the heat equation and $u \leq v$ on $\partial_{p} \Omega_{T}, \Omega$ a bounded domain. Show that

$$
u \leq v \quad \text { in } \Omega_{T}
$$

