Demo 9, Partial Differential Equations, 2021

1. Consider a general wave equation $\partial_{t t} u=c^{2} \Delta u, c \neq 0$. Transform this into the standard form $\partial_{t t} v=\Delta v$. How does the solution given by d'Alembert's formula $(N=1)$ look for the general equation?
2. Let $F, G \in C^{2}(\mathbb{R})$. Show that $u(x, t)=F(x+t)+G(x-t)$ is a solution to the one dimensional wave equation.
3. Show that solutions $u \in C^{2}(\mathbb{R} \times(0, \infty))$ given by d'Alembert's formula with initial condition $g \in C^{2}(\mathbb{R})$ and $h \in C^{1}(\mathbb{R})$ are of above form.
4. Does the wave equation satisfy a max principle? Hint: try for example $u(x, t)=\int_{x-t}^{x+t} \sin (y) d y$ in a suitable domain.
5. Let $F \in C^{2}(\mathbb{R})$ and

$$
u: \mathbb{R}^{N} \times(0, \infty), u(x, t)=F(\omega \cdot x-c t)
$$

Show that u solves the equation $\partial_{t t} u-c^{2} \Delta u=0$. Why are these called "planewaves"?

