
PARTIAL DIFFERENTIAL EQUATIONS 2021, LECTURE NOTES

These lecture notes are essentially the PDE 2019 notes by Mikko Parviainen (with
some minor changes by the current lecturer, Jarkko Siltakoski). See also “Partial Differ-
ential Equations” by L. C. Evans. These notes will be updated as the course progresses.
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1. INTRODUCTION

A partial differential equation (PDE), is an equation of an unknown function of two
or more variables and its partial derivatives.

Example 1.1 (A very simple PDE). Let Ω ⊂ R2 be an open set. A function u ∈C2(Ω)
is said to be a solution to the equation

D11u(x1,x2)+D22u(x1,x2) = 0 in Ω (1.1)

if the equation holds for all (x1,x2) ∈ Ω. One may now ask that what kind of functions
are solutions and what kind of special properties they have.

Of course, there is an infinite number of solutions to equation (1.1) since any affine
function is a solution (why?). To have uniqueness of solutions, one often needs the
function to satisfy something more than just the PDE. A typical case is the boundary
value problem, such as{

D11u(x1,x2)+D22u(x1,x2) = 0 in B1,

u(x1,x2) = g(x1,x2) on ∂B1,

where g is some fixed function on ∂B1.

Depending on what we are modeling, the unknown u may describe a physical quan-
tity such as heat or electric potential. Partial differential equations have a great variety
of applications to mechanics, engineering electrostatics, quantum mechanics and many
other fields of physics as well as finance. In addition, PDEs have a rich mathematical
theory and their study can be also motivated from a purely mathematical perspective.

Example 1.2. We consider the initial value problem{
∂tu+b ·Du = 0 in RN × (0,∞),

u = g on RN ×{t = 0} ,
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where

u : RN × (0,∞)→ R (unknown),

g : RN → R (given),

b = (b1, . . . ,bN) (given),

Du = (D1u, . . . ,DNu) (spatial gradient).

This is called a transport equation. Roughly, the reason for the name of the equation is
as follows. Consider a conveyor belt that is for simplicity modelled in 1D, and infinity
long. Then denote the mass density kg/m at x at time t by u(x, t). The speed of the belt
is b and thus mass exiting at x+h in a short time s is approximately

−sbu(x+h, t)

and similarly mass entering at x is sbu(x, t). Then it holds that

change of mass on [x,x+h] over time [t, t + s]

= (mass entering at x over time [t, t + s])− (mass exiting at x+h over time [t, t + s]).

That is ∫ x+h

x
u(y, t + s)dy−

∫ x+h

x
u(y, t)dy ≈ u(x, t)bs−u(x+h, t)bs

and so
1
h

∫ x+h

x

u(y, t + s)−u(y, t)
s

dy ≈ u(x, t)−u(x+h, t)
h

b.

Since 1
h
∫ x+h

x is just the integral average, we let s,h → 0 to obtain

∂tu(x, t) =−∂xu(x, t)b.

What we naturally need to solve for mass density at given location x and time t is the
initial mass density g(x). We can guess that the solution is

u(x, t) = g(x−bt).

The conveyor belt example makes sense even for g ̸∈ C1, so already such an example
suggests a need for “weak solutions”. They are dealt in the later courses (PDE2, Viscos-
ity theory).

1.1. Notation. Basic notation
RN , N-dimensional Euclidean space
R1 = R
e1 = (1,0, . . . ,0), . . .,eN = (0, . . . ,N), standard basis vectors
Ω, U ⊂ RN open set, bounded unless otherwise stated

|x|=
√

x2
1 + . . .x2

N for x ∈ RN ,
∂Ω boundary of a set Ω,
B(x,r) a ball of radius r centered at x
|B(x,r)|= αNrN = volume of a ball
|∂B(x,r)|= ωNrN−1 = area of a sphere
−
∫

B(0,ε) . . . dy = 1
|B(0,ε)|

∫
B(0,ε)

. . . dy mean value integral over ball

−
∫

∂B(0,ε) . . . dy = 1
|∂B(0,ε)|

∫
B(0,ε)

. . . dy mean value integral over sphere

Ω ⋐U , Ω ⊂U and Ω is compact
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Functions and derivatives. f : Ω → R, a function
spt f = {x ∈ Ω : f (x) ̸= 0}= the support of f
∂u
∂x j

(x) = limh→0
u(x+he j)−u(x)

h partial derivative of u to the direction e j

ux j = D ju = ∂u
∂x j

shorthands for partial derivatives

uxix j = Di ju = ∂ 2u
∂xi∂x j

higher order derivatives

Du = ( ∂u
∂x1

, . . . , ∂u
∂xN

) = (D1u, . . . ,DNu) gradient
∂u
∂ν

= Du ·ν , outward normal derivative, ν outward unit normal vector

Multi-indexes and spaces. α = (α1, . . . ,αN) ∈ NN multi-index
|α|= α1 + . . .+αN

Dαu = ∂ α1

∂xα1
1
. . . ∂ αN

∂xαN
1

u

Dku(x) = {Dαu(x) : |α|= k}, whenever k ∈ N

D2u(x) =

D11u(x) · · · D1Nu(x)
... . . . ...

DN1u(x) · · · DNNu(x)

 Hessian matrix

D1u(x) = Du(x)
C(Ω) = { f : f continuous in Ω}
C(Ω) = { f : f uniformly continuous on bounded subsets of Ω}
C0(Ω) = { f ∈C(Ω) : spt f ⋐ Ω}
Ck(Ω) = { f ∈C(Ω) : f is k times continuously differentiable}
Ck(Ω) =

{
u ∈Ck(Ω) : Dαu is uniformly cont on all bounded subsets of Ω for |α|≤ k

}
Ck

0(Ω) =Ck(Ω)∩C0(Ω)

C∞
0 (Ω) = ∩∞

k=1Ck(Ω) = smooth functions
C∞

0 (Ω) =C∞(Ω)∩C0(Ω) = compactly supported smooth functions
∥ f∥L∞(Ω) = supΩ | f | for f ∈C(Ω).

1.2. General form of a PDE and classifications.

Definition 1.3 (General form). Given a real valued function F , the expression of the
form

F(Dku(x),Dk−1u(x), . . . ,Du(x),x) = 0

is the kth-order PDE, i.e. k is the highest order derivative. The unknown is a function
u : Ω → R.

Example 1.4. Most of the examples on this course are of second order. Let

D2u(x) =
(

D11u D12u
D21u D22u

)
,

F : R2×2 ×R2 ×R×R2 → R,
F(X ,η ,u,x) := X11 +X22,

X =

(
X11 X12
X21 X22

)
.

Then we have the Laplace’s equation

F(D2u(x),Du(x),u(x),x) = D11u(x)+D22u(x) = 0.
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Remark 1.5. Recall that

u ∈Ck(Ω) ⇐⇒ Dαu ∈C(Ω)

for any multi-index α ∈ (α1, . . . ,αk) ∈ Nk such that |αk|= α1 + . . .+αk ≤ k, where

Dαu :=
∂ α1

∂xα1
1

. . .
∂ αk

∂xαk
k

u

and
∂ αi

∂xαi
i

u =
∂

∂xi
· · · ∂

∂xi︸ ︷︷ ︸u.

=αi times

Definition 1.6. If a PDE can be written in the forms below, then it is called
(1) linear, if

∑
|α|≤k

aα(x)Dαu(x) = f (x),

(2) semilinear, if

∑
|α|=k

aα(x)Dαu(x)+a0(Dk−1u, . . . ,Du,u,x) = 0,

(3) quasilinear, if

∑
|α|=k

aα(Dk−1u, . . .Du,u,x)+a0(Dk−1u, . . . ,Du,u,x) = 0,

(4) Fully nonlinear, if the PDE depends nonlinearly on the highest-order derivatives.

Remark 1.7. In the second order case we get
(1) linear if

Lu(x) :=
N

∑
i, j=1

ai j(x)Di ju(x)+
N

∑
i=1

bi(x)Diu(x)+ c(x)u(x) = f (x)

for given coefficients ai j, bi and c.
(2) Quasilinear, if

N

∑
i, j=1

ai j(Du,u,x)Di ju(x)+a0(Du,u,x) = 0

Remark 1.8.
(1) In the linear case the LHS of PDE can be seen as a linear operator in the function

space
L(au+bv) = aL(u)+bL(v),

where a,b ∈R and u,v are functions (=linearity, L like linear), and PDE reads as

Lu = f .

Observe that the operator is linear, but naturally if there is a right hand side i.e.
∆u = f , ∆v = f , then

∆(u+ v) = ∆u+∆v = 2 f ,

so u+ v does not solve the same equation.
(2) Quasilinear equation is linear in the highest order derivatives.
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Example 1.9.
(1) Laplacian i.e. ∆u is linear. Let ai j = 0 if i ̸= j and ai j = 1 if i = j. Then

∆u =
N

∑
i=1

Diiu =
N

∑
i, j=1

ai jDi ju

and

∆(au+bv) =
N

∑
i=1

Dii(au+bv) = a
N

∑
i=1

Diiu+b
N

∑
i=1

Diiu = a∆u+b∆v.

(2) ∆u+ |Du|2 is semilinear.

Remark 1.10. There are further classifications. If the highest order term can be written
in the form

div(A (Dk−1u, . . . ,u,x)),
then the equation is in divergence form. If not, then it is in non-divergence form.

Example 1.11. Observe that

−div(A (x)Du) =−
N

∑
i=1

Di(
N

∑
j=1

ai j(x)D ju(x)) =−
N

∑
i, j=1

Di(ai j(x)D ju(x)),

where A is a matrix with the entries ai j. That is, a linear equation in the divergence
form reads as

−
N

∑
i, j=1

Di(ai j(x)D ju(x))+
N

∑
i=1

bi(x)Diu(x)+ c(x)u(x) = f (x).

Remark 1.12. There are further classifications. In particular:
• Elliptic=”Laplace equation like”
• Parabolic=”Heat equation like, time dependent”
• Hyperbolic=”Wave equation like, time dependent”

One could give more precise statements, but we do not pursue this direction.

Remark 1.13. There are several boundary value problems. The most common in this
course is the Dirichlet boundary value problem: the value of the function is given at the
boundary

u = g on ∂Ω.

C.f. the derivation of the minimal surface equation.
We also encounter the Neumann problem, where the outward normal derivative is

given:
∂u
∂ν

= g on ∂Ω,

where ∂u
∂ν

= Du · ν is the outward normal derivative and ν is the outward unit normal
vector.

Remark 1.14. There are several kind of solutions. On this course we consider classical
solutions. It means that solution is smooth enough so that the derivatives in the equation
make sense. For example, u ∈ C2(Ω) such that ∆u = 0 is a classical solution to the
Laplace equation.
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• Weak (distributional) solutions are considered in the course PDE2. Divergence
form equations.

• Viscosity solutions are considered in the course Viscosity theory (PDE3). Con-
trol and game theory applications, probability and finance.

• Strong solutions, variational solutions...

Remark 1.15 (A well-posed problem). A PDE is well-posed if it has
(1) existence
(2) uniqueness
(3) stability: the solution depends continuously on data. In many cases in physics,

data comes from measurements and it is crucial that small variations in the mea-
surements only cause small change in the solution.

1.3. Examples.

Example 1.16.
(1) Laplace equation

∆u =
N

∑
i=1

Diiu = 0

(2) Poisson equation
−∆u(x) = f (x)

(3) Nonlinear Poisson equation ( f not linear)

−∆u(x) = f (u)

(4) Heat equation
∂tu−∆u = 0

(5) Wave equation
∂

2
tt −∆u = 0

(6) Linear transport equation

∂tu+b ·Du = 0

(7) Eikonal equation
|Du|2 = 1

(8) Eigenvalue equation or Helmholz equation

−∆u = λu

(9) p-Laplace equation

−div(|Du|p−2 Du) = 0, p > 1

(10) Infinity Laplace equation

∆∞u :=
N

∑
i, j=1

D2
i juDiuD ju = 0

(11) Monge-Ampére equation

det(D2u) = f

(12) Hamilton-Jacobi equation

∂tu+H(Du,x) = 0
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(13) Parabolic p-Laplace/p-parabolic equation

∂tu = div(|Du|p−2 Du)

(14) Porous medium equation
∂tu = ∆um

(15) Minimal surface equation

div

 Du√
1+ |Du|2

= 0

(16) Navier-Stokes equation (system, N = 3) (1 million $ prize){
∂t(ui)+u ·Dui −ν∆ui = − ∂ p

∂xi
, i = 1,2,3,

divu = 0,u = (u1,u2,u3)

Systems (many equations) are often, like in this case, more involved.

Next we will derive an equation for the soap film (minimal surface equation). Recall
the following counterparts of the integration by parts from earlier courses. As a reminder,
∂Ω∈C1 roughly means that the boundary can be locally presented as a C1 function. This
suffices to ensure that the normal vector is well defined.

Theorem 1.17 (Gauss-Green theorem). Let ∂Ω ∈C1 and u ∈C1(Ω). It holds that∫
Ω

Diudx =
∫

∂Ω

uνi dS, i = 1,2, . . . ,N,

where ν = (ν1, . . . ,νN) is the unit normal vector.

Example 1.18. In 1D the previous theorem is just the fundamental theorem of calculus∫ b

a
u′ dx = u(b)−u(a).

From the Gauss-Green theorem, we obtain (ex).

Theorem 1.19 (Divergence theorem). Let ϕ ∈ C∞
0 (Ω) and F : RN → RN , Fi ∈ C1(Ω).

Then ∫
Ω

F ·Dϕ dx =−
∫

Ω

divFϕ dx, i = 1,2, . . . ,N.

Example 1.20. In 1D this is just integration by arts with zero boundary values∫ b

a
Fϕ

′ dx = 0−0−
∫ b

a
F ′

ϕ dx.

Example 1.21 (Minimal surface equation). Suppose you dip a wire frame into a soap
solution, forming a soap film. The soap film tends to minimize the area i.e. it forms a
minimal surface with boundary values fixed at the wire. Let Ω ⊂ R2,

u : Ω → R, unknown, the height of the soap film.

Area of 3D-surface z = u(x) is

A(u) =
∫

Ω

√
1+ |Du|2 dx,
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where

|Du|2 =
2

∑
i=1

|Diu|2 .

Heuristically the idea is that since u is the minimizer, if we vary it a bit while preserving
the boundary values, and compute a suitable derivative, then this derivative should be
zero by the minimizing property. Let ϕ ∈C∞

0 (Ω). Since

d
dε

|D(u+ εϕ)|2 = d
dε

N

∑
i=1

(Diu+ εDiϕ)
2

=
N

∑
i=1

2(Diu+ εDiϕ)Diϕ = 2(Du+ εDϕ) ·Dϕ,

we get
d

dε
A(u+ εϕ) =

d
dε

∫
Ω

√
1+ |D(u+ εϕ)|2 dx

=
d

dε

∫
Ω

2(Du+ εDϕ) ·Dϕ

2
√

1+ |D(u+ εϕ)|2
dx.

As the soap film minimizes the area, the solution u should satisfy for any perturbation
ϕ ∈C∞

0 (Ω)

0 =
d

dε
A(u+ εϕ)

∣∣∣
ε=0

=
∫

Ω

Du√
1+ |Du|2

·Dϕ dx

div-thm
= −

∫
div

 Du√
1+ |Du|2

ϕ dx.

Since this holds for all ϕ ∈C∞
0 (Ω), we have (ex)

div

 Du√
1+ |Du|2

= 0.

2. FIRST ORDER LINEAR EQUATIONS

We will solve some simple equations.

2.1. An equation with constant coefficients.
(1) ODE:

u : R→ R,{
du
dx = 0,
u(0) = 1.

Then u(x) = c and since u(0) = 1 the solution is u(x) = 1.
(2) PDE:

u : R2 → R,
∂u(x,y)

∂x
= 0.
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The solution is constant along horizonal lines i.e. {(x,y) : y = c} is a character-
istic curve of u for any c ∈ R. Therefore u(x,y) = f (y). Thus if we are given for
example the initial condition u(0,y) = y2, we get the whole solution

u(x,y) = y2.

(3) Consider

u : R2 → R,
a,b ∈ R, a ̸= 0 or b ̸= 0,

u : R2 → R.

(a) Geometric method. Suppose that we have the equation

a∂xu+b∂yu = Du · (a,b) = 0.

This means that u is constant along lines to the direction of (a,b). In other
words, the solution only depends on the inner product (x,y) · (b,−a) (ob-
serve that (b,−a) · (a,b) = 0, see the picture in the lectures). That is, there
exists differentiable f : R→ R such that

u(x) = f ((x,y) · (b,−a) = f (bx−ay).

Indeed, let us check

∂xu(x,y) = b f ′(bx−ay),

∂yu(x,y) =−a f ′(bx−ay)

=⇒ a∂xu(x,y)+b∂y(x,y) = ab f ′(bx−ay)−ba f ′(bx−ay) = 0.

Example: {
4∂xu−3∂yu = 0
u(0,y) = y3.

From the general solution we have

u(x,y) = f (−3x−4y).

So by the initial condition

u(0,y) = y3

=⇒ f (−3 ·0−4y) = y3

=⇒ f (−4y) = y3

=⇒ f (t) =−t3/64.

And so u(x,y) =−(−3x−4y)3/64 = (3x+4y)3/64.
(b) Method of characteristics: try to find a “characteristic curve” starting at

some point (x0,y0) :

{(x(s),y(s)) : x(0) = x0,y(0) = y0}

such that
z(s) := u(x(s),y(s)) (2.1)
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is easy to solve along that curve using the PDE. We have
d
ds

z(s) =
d
ds

u(x(s),y(s))

= Du(x(s),y(s)) · (x′(s),y′(s))
= 0, (2.2)

where the last identity holds if x′(s) = a and y′(s) = b. Thus we take

x(s) = x0 + sa and y(s) = y0 + sb.

Then by (2.2) the function z(s) is constant and so by (2.1) the solution u is
constant on the curve

s 7→ (x(s),y(s)) = (x0 + sa,y0 + sb)

for any choice of (x0,y0). Thus again solutions have the form

u(x,y) = f (bx−ay).

Example (same as above):{
(4,−3) ·Du = 0
u(0,y) = y3.

We take x(s) = 4s and y(s) =−3s+ y0 so that
d
ds

z(s) =Du(x(s),y(s)) · (x′(s),y′(s)) = 0.

We want to solve the value of u at (x,y). By taking s = x/4 and y0 = 3x/4+
y, we have x(s) = x and y(s) = y. Thus

u(x,y) = u(x(s),y(s)) = c for all s. (2.3)

In particular, by the initial condition and definition of x(s) and y(s), we have

c = u(x(0),y(0)) = u(0,y0) = y3
0 = (3x/4+ y)3. (2.4)

Consequently, by (2.3) and (2.4), we obtain u(x,y) = (3x/4+ y)3 = (3x+
4y)3/64.

2.2. Nonconstant coefficients. We consider equations of the type

a(x,y)∂xu+b(x,y)∂yu = (a(x,y),b(x,y)) ·Du = 0.

Example 2.1. Consider

y∂xu(x,y)− x∂yu(x,y) = (y,−x) ·Du(x,y) = 0. (2.5)

Again we use the method of characteristics: We try to deduce behavior of u on suitable
curves. Consider the curve

Γx0,y0 := {(x(s),y(s)) : x(0) = x0, y(0) = y0, s ∈ R}

starting at (x0,y0) ∈ R2 and set

z(s) := u(x(s),y(s)) for all s ∈ R.
We let x(s) and y(s) solve the ordinary differential equation pair{

x′(s) = y(s), x(0) = x0,

y′(s) =−x(s), y(0) = y0,
(2.6)
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so that by (2.5) we have
d
ds

z(s) = (x′(s),y′(s)) ·Du(x(s),y(s))

= (y(s),−x(s)) ·Du(x(s),y(s)) = 0 for all s ∈ R.
This, by definition of z(s), means that u is constant along the curve Γx0,y0 . On the other
hand, Γx0,y0 depends on the equation pair (2.6) which can be solved using the means of
the course “differential equations”. Differentiating the first equation we get

x′′(s) = y′(s) =−x(s)

and thus the pair (2.6) is solved by{
x(s) = c1 cos(s)+ c2 sin(s),
y(s) =−c1 sin(s)+ c2 cos(s),

whenever c1,c2 ∈ R.

Observe that since (x(0),y(0)) = (x0,y0), we have c1 = x0, c2 = y0 and that the above is
just the equation of circle:

x2(s)+ y2(s) = c2
1(sin2(s)+ cos2(s))+ c2

2(sin2(s)+ cos2(s)) = c2
1 + c2

2.

In other words Γx0,y0 is a circle that contains the point (x0,y0). Since (x0,y0) was arbi-
trary, we now know that u is constant in any (0,0)-centered circle. Thus it can be written
in the form

u(x,y) = f (|(x,y)|) = f (
√

x2 + y2).

3. TRANSPORT EQUATION

3.1. Homogeneous. We consider{
∂tu+b ·Du = 0 in RN × (0,∞)

u = g on RN ×{t = 0} ,
(3.1)

where

u : RN × (0,∞)→ R (unknown),

g : RN → R, g ∈C1 (given),

b ∈ RN (given),

Du = (∂x1, . . . ,∂xN ) (spatial gradient). (3.2)

We already gave a rough derivation of (3.1) this at the beginning in 1D.
Let us solve (3.1) using the method of characteristics. We consider the curve

Γx0 = {(x̃(s), t̃(s)) : s ∈ [0,∞)}
starting from (x0,0), where {

x̃(s) = bs+ x0,

t̃(s) = s.

Then we have
d
ds

(u(x̃(s), t̃(s))) = Du(x̃(s), t̃(s)) · d
ds

x̃(s)+∂tu(x̃(s), t̃(s))
d
ds

t̃(s)

= Du(x̃(s), t̃(s)) ·b+∂tu(x̃(s), t̃(s)) = 0,

which means that u is constant along the curve Γx0 . This constant must be g(x0) since
(x0,0)∈Γx0 and u(x0,0)= g(x0) by the initial condition in (3.1). Thus we have u≡ g(x0)
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on Γx0 . Since an arbitrary point (x, t) ∈RN × [0,∞) is on the curve Γx−bt , we deduce the
identity

u(x, t) = g(x−bt).

Remark 3.1. In order for u to be a classical solution, we require g ∈C1. However, even if
the original mass distribution is rough, still g(x−bt) seems to make sense as a solution.
This suggests the need for a weaker concept of solution.

3.2. Inhomogeneous. We consider{
∂tu+b ·Du = f (x, t) in RN × (0,∞),

u = g on RN ×{t = 0} ,
(3.3)

where
f : RN ×R→ R,

and the rest of the quantities are as in (3.2).

Example 3.2. We continue Example 1.2 but now we in addition drop material on the
conveyor belt the amount f (x, t) measured in kg/(ms). Thus∫ x+h

x
u(y, t + s)dy−

∫ x+h

x
u(y, t)≈ u(x, t)bs−u(x+h, t)bs+ s

∫ x+h

x
f (y, t)dy

=⇒ 1
h

∫ x+h

x

u(y, t + s)−u(y, t)
s

dy ≈ u(x, t)−u(x+h, t)
h

b+
1
h

∫ x+h

x
f (y, t)dy.

Letting s → 0, h → 0, we get
∂tu−b∂xu = f

and f represents a source (or a sink if negative).

Let us solve (3.3) using the method of characteristics. We consider the curve

Γx0 = {(x̃(s), t̃(s)) : s ∈ [0,∞)}
starting from (x0,0), where {

x̃(s) = bs+ x0,

t̃(s) = s.

Then we have
d
ds

(u(x̃(s), t̃(s))) = Du(x̃(s)) · d
ds

x̃(s)+∂tu(t̃(s))
d
ds

t̃(s)

= Du(x̃(s)) ·b+∂tu(t̃(s)) = f (x̃(s), t̃(s)).

It follows by the fundamental lemma of calculus that

u(x̃(s), t̃(s)) = u(x̃(0), t̃(0))+
∫ s

0
f (x̃(r), t̃(r))dr for all s ∈ [0,∞). (3.4)

Given an arbitrary point (x, t)∈RN×[0,∞), we set x0 = x−bt. Then we have (x̃(t), t̃(t))=
(x, t) which means that (x, t) ∈ Γx0 . Thus by (3.4) we obtain

u(x, t) = u(x̃(t), t̃(t)) = u(x̃(0), t̃(0))+
∫ t

0
f (x̃(r), t̃(r))dr

= u(x−bt,0)+
∫ t

0
f (br+ x−bt,r)dr

= g(x−bt)+
∫ t

0
f (b(r− t)+ x,r)dr.
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Example 3.3. Suppose that there is a decay of mass (for some weird reason) comparable
to the amount of mass and time by factor c, no source. Then∫ x+h

x
u(y, t + s)dy−

∫ x+h

x
u(y, t)≈ u(x, t)bs−u(x+h, t)bs− sc

∫ x+h

x
u(y, t)dy

=⇒ 1
h

∫ x+h

x

u(y, t + s)−u(y, t)
s

dy ≈ u(x, t)−u(x+h, t)
h

b+
1
h

∫ x+h

x
cu(y, t)dy.

This gives an equation
∂tu+b∂xu+ cu = 0.

4. LAPLACE EQUATION

We consider the Laplace equation

∆u = 0,

where ∆u = ∑
N
i=1 Diiu = ∑

N
i=1 ∂xi∂xiu. We also consider the Poisson equation

−∆u = f .

Definition 4.1. Solutions u∈C2(Ω) to the Laplace equation ∆u= 0 are called harmonic.

Usually we consider an open set Ω ⊂ RN and given boundary values g : ∂Ω → R,
g ∈C(∂Ω) and look for the solution u ∈C2(Ω)∩C(Ω) to the Dirichlet problem{

∆u = 0 in Ω,

u = g on ∂Ω.

Example 4.2. (Equilibrium of diffusion) The Laplace equation models the equilibrium
of diffusion. Let U ⊂ Ω be a smooth subset and consider the net flux through the bound-
ary ∂U :

0
equilibrium

=
∫

∂U
F ·ν dS div−thm

=
∫

U
div(F)dx,

where ν is the exterior unit normal vector. If this holds for every U ⊂ Ω, it is reasonable
to assert that

div(F) = 0.
Think for example heat transfer, it is reasonable to assert that flux depends on the dif-
ference: heat flows from hot to cold, and faster the greater the difference. Thus we
set

F =−aDu
and get

0 = div(−aDu) =−a∆u.

Next, suppose that there is a heat source/sink f : Ω → R. Then the net flux equals∫
U f dx ∫

U
f dx =

∫
∂U

F ·νdS =
∫

U
div(F)dx

and with F =−Du we get the Poisson equation

−∆u = f .

The boundary values u = g on ∂Ω model a situation where temperatures, voltages or
chemical concentrations are given/known at the boundary and we try to find them inside.
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Example 4.3. Let Ω = (0,1) and consider{
∆u(x) = u′′(x) = 0 in Ω

u(0) = 0,u(1) = 2.

Then u(x) = ax+b and from

u(0) = b = 0, u(1) = a1 = 2,

so that the solution is u(x) = 2x. Without the unique boundary values we of course
couldn’t have found the unique solution. This is natural also from the point of view of
physical applications above.

Consider then the Poisson equation{
−∆u =−u′′ = 1 in Ω

u(0) = 0,u(1) = 0.

Then u′(x) =−x+a and u(x) =−1
2x2 +ax+b and

u(0) = b = 0, u(1) =−1
2
+a = 0

so that the solution is u(x) =−1
2x2 + 1

2x.

4.1. Fundamental solution. We seek a solution u :RN \{0}→R to Laplace’s equation
that is radially symmetric:

u(x) = v(|x|)
for some v : (0,∞)→ R. We denote r(x) := |x| so that u(x) = v(r(x)). Then

r = (
N

∑
i=1

x2
i )

1/2,

Dir =
2xi

2(∑N
i=1 x2

i )
1/2

=
xi

r
,

Diir =
1
r
− xi

Dir
r2 =

1
r
− x2

i
r3 .

Thus by chain rule

Diu = Div(r) = v′(r)Dir = v′(r)
xi

r
,

Diiu = Di(v′(r)Dir) = v′′(r)
xi

r
Dir+ v′(r)Diir = v′′(r)

x2
i

r2 + v′(r)(
1
r
− x2

i
r3 ).

Therefore

0 = ∆u =
N

∑
i=1

Diiu =
N

∑
i=1

(
v′′(r)

x2
i

r2 + v′(r)(
1
r
− x2

i
r3 )

) ∣∣∣ N

∑
i=1

x2
i = r2

= v′′(r)
r2

r2 + v′(r)(
N
r
− r2

r3 )

= v′′(r)+ v′(r)
N −1

r
.

Since r was just shorthand for |x| and the above holds for any x ∈ RN \ {0}, we have
deduced that

v′′(s)+ v′(s)
N −1

s
= 0 for all s ∈ (0,∞).
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Assuming that v′ ̸= 0, we conclude further that

(log(
∣∣v′(s)∣∣))′ = v′′(s)

v′(s)
=

1−N
s

for all s ∈ (0,∞).

Denoting g(s) := log(|v′(s)|), the above reads as

g′(s) =
1−N

s
,

which is solved by

g(s) = a+(1−N) logs = a+ logs1−N whenever a ∈ R.
Thus, v′ must satisfy

log(
∣∣v′(s)∣∣) = a+ logs1−N

⇐⇒ elog|v′(s)| = ea+logs1−N

⇐⇒
∣∣v′(s)∣∣= eas1−N =: bs1−N (4.1)

for all s ∈ (0,∞) and some constant b > 0. From (4.1) we conclude that a radial solution
to Laplace’s equation in RN \{0} is given by

u(x) = v(|x|),
where

v(s) =

{
c logs+d if N = 2,
cs2−N +d if N ≥ 3,

and c,d ∈ R are arbitrary constants. This motivates the following definition.

Definition 4.4 (Fundamental solution). The function

Φ(x) :=

{
c2 log(|x|) if N = 2,
cN

1
|x|N−2 if N ≥ 3,

where cN ≥ 0 ≥ c2 are explicit constants to be given later in (4.6), is called the funda-
mental solution to Laplace’s equation.

4.2. Poisson equation.

Remark 4.5. Observe that the functions

x 7→ Φ(x)

x 7→ Φ(x− y)

x 7→ Φ(x− y) f (y)

x 7→ Φ(x− y1) f (y1)+Φ(x− y2) f (y2)

are harmonic in the set where they are defined. However,

x 7→
∫
RN

Φ(x− y) f (y)dy

is not harmonic, even if one might be tempted to calculate

∆x

∫
RN

Φ(x− y) f (y)dy ?
=
∫
RN

∆xΦ(x− y) f (y)dy.

This is one of those cases where the order of the integral and the differential operator ∆x

cannot be changed i.e. ?
= does not hold (see Remark 4.7).
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Theorem 4.6. Let f ∈C2
0(RN). Let u be the convolution of Φ and f i.e.

u(x) := (Φ∗ f )(x) :=
∫
RN

Φ(x− y) f (y)dy.

Then

(1) u ∈C2(RN),
(2) −∆u = f in RN .

Proof. (1) By change of variables

u(x) =
∫
RN

Φ(x− y) f (y)dy =
∫
RN

Φ(y) f (x− y)dy. (4.2)

Let ei = (0, . . . , 1︸︷︷︸
i th

,0, . . .0), h > 0. First we compute using (4.2)

∂xiu(x) = lim
h→0

u(x+hei)−u(x)
h

= lim
h→0

∫
RN

Φ(y)
f (x+hei − y)− f (x− y)

h
dy

=
∫
RN

Φ(y)∂xi f (x− y)dy, (4.3)

where the last identity requires justification. Since f ∈ C2
0(RN), the function ∂xi f is

uniformly continuous i.e. there exists a continuous, increasing function ω : [0,∞) →
[0,∞), ω(0) = 0 such that

|∂xi f (z1)−∂xi f (z2)| ≤ ω(|z1 − z2|) for all z1,z2 ∈ RN .

Thus by the mean value theorem∣∣∣∣ f (x+hei − y)− f (x− y)
h

−∂xi f (x− y)
∣∣∣∣ ∣∣∣ by m.v. thm. ∃ξ ∈ [x− y,x+hei − y] s.t.

f (x+hei−y)− f (x−y)
h = ∂xi f (ξ )

= |∂xi f (ξ )−∂xi f (x− y)|
≤ ω(|ξ − (x− y)|)
≤ ω(h).

Thus, since spt f ⊂ BR for some R > 0, we have∣∣∣∣∫RN
Φ(y)

(
f (x+hei − y)− f (x− y)

h
−∂xi f (x− y)

)
dy
∣∣∣∣

≤
∫

BR

|Φ(y)|ω(h)dy = ω(h)︸︷︷︸
→0

∫
BR

|Φ(y)|︸ ︷︷ ︸
<∞

dy → 0 as h → 0,

which justifies the last identity in (4.3). As the expression at the right hand-side of (4.3)
is continuous in x, we conclude that u ∈C1(RN). Similarly we could show that

∂xi∂x ju(x) =
∫
RN

Φ(y)∂xi∂x j f (x− y)dy (4.4)

and ∂xi∂x ju(x) ∈C(RN).
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(2) Fix ε > 0. By (4.4) we have

∆u(x) =
∫

B(0,ε)
Φ(y)∆ f (x− y)dy+

∫
RN\B(0,ε)

Φ(y)∆ f (x− y)dy

= : Iε + Jε .

Observe then that if N ≥ 3, we have∫
B(0,ε)

|y|2−N =
∫

ε

0

∫
∂B(0,r)

r2−N dSdr
∣∣∣ |∂B(0,r)|=CrN−1

=C
∫

ε

0
r dr =C

1
2

ε
2

and if N = 2∫
B(0,ε)

− log(|y|)dy =−
∫

ε

0

∫
∂B(0,r)

logr dSdr

=−C
∫

ε

0
r logr dr

∣∣∣integration by parts

=C(−1
2

ε
2 logε +

1
4

ε
2)≤Cε

2 |logε| .

Thus

|Iε |=
∣∣∣∣∫B(0,ε)

Φ(y)∆ f (x− y)dy
∣∣∣∣≤ max

y∈RN
|∆ f (x− y)|

∫
B(0,ε)

Φ(y)dy

≤C

{
ε2 |logε| , N = 2,
ε2, N ≥ 3,

→ 0 as ε → 0.

For Jε choosing R > 0 large enough so that spt f ⊂ B(0,R), we can integrate by parts (or
use Gauss-Green theorem to be precise) to obtain

Jε =
∫

B(0,R)\B(0,ε)
Φ(y)∆ f (x− y)dy

=−
∫

B(0,R)
DΦ(y) ·D f (x− y)dy+

∫
∂B(0,ε)

Φ(y)D f (x− y) ·νdS(y)

=:Kε +Lε ,

where ν = ν(y) =−y/ |y| is the outwards pointing unit normal vector. Then

|Lε |=
∣∣∣∣∫

∂B(0,ε)
Φ(y) ·D f (x− y) ·ν dS(y)

∣∣∣∣
=Cε

N−1 max
y∈∂B(0,ε)

|Φ(y)| max
y∈∂B(0,ε)

|D f (x− y)|

≤Cε
N−1

{
|logε| , N = 2,
ε2−N , N ≥ 3,

→ 0 as ε → 0.
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We integrate Kε by parts

Kε =−
∫

B(0,R)\B(0,ε)
DΦ(y) ·D f (x− y)dy

=
∫

B(0,R)\B(0,ε)
divDΦ(y)︸ ︷︷ ︸
=∆Φ=0

f (x− y)dy−
∫

∂B(0,ε)
DΦ(y) ·ν f (x− y)dS(y)

=−
∫

∂B(0,ε)
DΦ(y) ·ν f (x− y)dS(y)

=−
∫

∂B(0,ε)

{
c2

y
|y|2

N ≥ 2,

cN(2−N)y |y|−N N ≥ 3,
· (− y

|y|
) f (x− y)dS(y) (4.5)

=
∫

∂B(0,ε)

{
c2 |y|−1 N ≥ 2,
cN(2−N) |y|1−N N ≥ 3,

f (x− y)dS(y)

choose cN= − 1
|∂B(0,ε)|

∫
∂B(0,ε)

f (x− y)dS(y)
avg.→ − f (x)

as ε → 0. Observe that above ν = − y
|y| is the exterior normal to B(0,R) \B(0,ε) on

∂B(0,ε). Above we had |y|= ε and fixed cN so that

− 1
|∂B(0,ε)|

=

{
c2ε−1, N = 2
cN(2−N)ε1−N , N ≥ 3

and since |∂B(0,ε)|= NαNεN−1, we get

c2 =− 1
2α2

=− 1
2π

,

cN =
1

(N −2)NαN
, N ≥ 3. (4.6)

We have thus proven that

∆u(x) = Iε + Jε = Iε +Kε +Lε →− f (x)

as ε → 0. □

Remark 4.7. The Dirac delta distribution denoted by δx is defined by the identity

δx( f ) = f (x)

for all f ∈C∞
0 (RN). By Theorem 4.6 we thus have

−∆u(x) =−∆

∫
RN

Φ(x− y) f (y)dy = δx( f ).

One can also think δx as a measure that satisfies∫
RN

f (y)dδx(y) = f (x)

so that
−∆

∫
RN

Φ(x− y) f (y)dy =
∫
RN

f (y)dδx(y).

More on this on the course “Measure and integration”.

The proof of Theorem 4.6 also motivates the introduction of the following important
tool.
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4.3. Convolution, mollifiers, and approximations. We denote

Ωε := {x ∈ Ω : dist(x,Ω)> ε}

which is an open set by continuity of dist(x,∂Ω).

Definition 4.8 (Standard mollifier). Let

η : RN → R, η(x) =

{
Ce1/(|x|2−1), |x|< 1,
0, |x| ≥ 1,

where C is chosen so that ∫
RN

η dx = 1.

Then we set for ε > 0

ηε(x) :=
1

εN η(
x
ε
)

which is called the standard mollifier.

Remark 4.9. Observe that

ηε ∈C∞
0 (RN), sptηε ⊂ B(0,ε)

and ∫
RN

ηε(x)dx = 1.

Definition 4.10 (Standard mollification). Let f : Ω → [−∞,∞], f ∈ C(Ω). Then we
define standard mollification for f by

fε : Ωε → R, fε := ηε ∗ f ,

where ηε ∗ f (x) =
∫

Ω
ηε(x− y) f (y)dy denotes the convolution for x ∈ Ωε .

Definition 4.11. We say that u j → u locally uniformly in Ω if u j → u uniformly in K for
every K ⋐ Ω.

Theorem 4.12. The standard mollification has the following properties for f ∈C(Ω).
(1)

Dα fε = f ∗Dα
ηε in Ωε

and
fε ∈C∞(Ωε).

(2) If f ∈C(Ω), then

fε → f locally uniformly in Ω.

(3) If Ω′′ ⋐ Ω′ ⋐ Ω, then
max

Ω′′
| fε | ≤ max

Ω′
| f |

for small enough ε > 0.

Proof. The formula Dα fε = f ∗Dαηε follows using similar techniques as in the proof of
Theorem (4.6). Then since ηε ∈C∞

0 by a direction calculation fε ∈C∞ too. The detailed
proof is given in the course PDE2. □
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4.4. Mean value property. A harmonic function has a remarkable property called the
mean value formula: the value at one point (!) determines the average of the function
over a ball. It also heuristically connects harmonic functions to the stochastic process
called Brownian motion and thus to stock prices, option pricing, etc. It is also a key to
many interesting mathematical properties.

Remember that −
∫

A f dx = 1
A
∫

A f dx denotes the integral average.

Theorem 4.13 (Mean value property = mvp). Let u ∈ C2(Ω). Then the following are
equivalent

(1) u is harmonic in Ω

(2) Whenever B(x,r)⋐ Ω, we have

u(x) =−
∫

∂B(x,r)
u(y)dS(y) =−

∫
B(x,r)

u(y)dy.

Proof. ”(1) =⇒ (2) Idea: Set

φ(r) =−
∫

∂B(x,r)
u(y)dS(y).

and show that φ ′(r) = 0.
To this end, let z ∈ B(0,1) and perform the change of variables y = rz+ x so that

dS(y) = rN−1 dS(z) and

φ(r) =
1

|∂B(x,r)|

∫
∂B(x,r)

u(y)dS(y) =
|∂B(0,1)|
|∂B(x,r)|

rN−1−
∫

∂B(0,1)
u(rz+ x)dS(z)

=−
∫

∂B(0,1)
u(rz+ x)dS(z).

Then changing the variables back we obtain

φ
′(r) =−

∫
∂B(0,1)

Du(rz+ x) · zdS(z)
∣∣∣z = y− x

r
,dS(z) = r1−NdS(y)

=
|∂B(x,r)|
|∂B(0,1)|

−
∫

∂B(x,r)
Du(y) · y− x

r
r1−N dS(y)

=−
∫

∂B(x,r)
Du(y) · y− x

r
dS(y)

∣∣∣divergence theorem

=
1

|∂B(x,r)|

∫
B(x,r)

divDu(y)dy
∣∣∣divDu = ∆u = 0

= 0,

where we used that y−x
r is the exterior unit normal vector. Since φ ′(r) = 0, φ has a

constant value that has to be

lim
r→0

−
∫

∂B(x,r)
u(y)dy = u(x).
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Moreover

−
∫

B(x,r)
u(y)dy =

1
|B(x,r)|

∫
B(x,r)

u(y)dy

=
1

|B(x,r)|

∫ r

0

∫
∂B(x,s)

udSds

=
1

|B(x,r)|

∫ r

0
|∂B(x,s)|−

∫
∂B(x,s)

udSds

=
1

|B(x,r)|

∫ r

0
|∂B(x,s)|u(x)ds

= u(x).

”(1) ⇐= (2)” Assume thriving for a contradiction that u is not harmonic even if the
mean value property holds i.e. that there is x so that ∆u(x)> 0 and by continuity even in
a small ball around x. Then using the above calculation

φ
′(r) =

1
|∂B(x,r)|

−
∫

∂B(x,r)
∆u(y)> 0

so that the mean value cannot be a constant, a contradiction. □

Example 4.14. Let Ω = (0,1) and ∆u = u′′ = 0. Then u(y) = ay+b and
1
2r

∫ x+r

x−r
u(y)dy =

1
2r

∫ x+r

x−r
(ay+b)dr = ax+b.

4.5. Properties of harmonic functions.

Example 4.15. Let Ω = (0,1) and ∆u = u′′ = 0. Then u(y) = ay+b. In particular, u ob-
tains its largest and smallest values at the boundary. This also holds in higher dimensions
as seen in the next theorem.

Theorem 4.16 (Max principles). Let Ω be a bounded open set and u ∈C2(Ω)∩C(Ω) a
harmonic function in Ω. Then

(1) (weak max principle) max
Ω

u = max∂Ω u,
(2) (strong max principle) if Ω is connected and there is x0 ∈ Ω such that

u(x0) = max
Ω

u, (4.7)

then u is constant in Ω.

Proof. (2) Suppose that (4.7) holds. Then for r > 0 such that B(x0,r)⋐ Ω we have

M := u(x0)
mvp
= −
∫

B(x0,r)
udy

by the mean value property. Since M is the maximum of u in Ω, the average on the right
can equal M only if

u ≡ M in B(x0,r).
Since Ω is connected, we deduce that

u ≡ M in Ω.

(1) Suppose on the contrary that max
Ω

u > max∂Ω u. Then there is a maximum point
inside the domain and by the strong maximum principle this is a contradiction.

Second proof: For later we use we also give a proof that does not use the strong
maximum principle. Assume without loss of generaility that Ω = B(0,1) and max

Ω
u >
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max∂Ω u+ 2ε for some ε > 0. Then v(x) = u(x)+ ε |x|2 /2 also attains a maximum at
some point z0 ∈ Ω. At the max point it holds that

∆v(z0)≤ 0

but on the other hand ∆v = ∆u+ εN = 0+ εN > 0, a contradiction. □

Remark 4.17. Also −u is harmonic and thus we obtain a minimum principle.

Remark 4.18. Obviously the mean value principle or maximum principle does not hold
for the Poisson equation. Recall that for{

−∆u =−u′′(x) = 1 in Ω = (0,1)
u(0) = 0,u(1) = 0

we have u(x) =−1
2x2 + 1

2x.

Theorem 4.19 (Uniqueness to Dirichlet problem). Let Ω be a bounded open set. Let
g ∈C(∂Ω) and f ∈C(Ω). Then the problem{

∆u = f in Ω,

u = g on ∂Ω,

has at most one solution u ∈C2(Ω)∩C(Ω).

Proof. Let u and v be two solutions. Then w = u− v solves

∆w = ∆(u− v) = f − f = 0

with boundary values w = 0. By the weak maximum principle

w = u− v ≤ 0 in Ω.

By setting, w = v−u we also get

v−u ≤ 0 in Ω.

□

Mean value property has also other perhaps surprising consequences.

Theorem 4.20 (Smoothness). If u ∈C(Ω) satisfies the mean value property

u(x) =−
∫

∂B(x,r)
udS

for every B(x0,r)⋐ Ω. Then

u ∈C∞(Ω).

In particular, harmonic functions are smooth.

Proof. Fix ε > 0. Denote by uε = ηε ∗u the mollification by convolution as in Definition
4.10 and Ωε = {x ∈ Ω : dist(x,∂Ω)> ε}. By Theorem 4.12 we have uε ∈C∞(Ωε). The
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claim then follows from the observation that u= uε when the mean value property holds.
Indeed, let x ∈ Ωε and compute

uε(x) = ηε ∗u =
∫
RN

ηε(x− y)u(y)dy

=
1

εN

∫
B(x,ε)

η(
x− y

ε
)u(y)dy

∣∣∣η radial

=
1

εN

∫
ε

0
η(

re1

ε
)
∫

∂B(x,r)
u(y)dS(y)dr

∣∣∣mvp

=
u(x)
εN

∫
ε

0
η(

re1

ε
) |∂B(x,r)| dr

=
u(x)
εN

∫
ε

0
η(

re1

ε
)ωNrN−1 dr

∣∣∣ηε(x) =
1

εN η(
x
ε
)

= u(x)
∫

B(x,ε)
ηε(y)dy

= u(x).

□

My mvp, harmonic function satisfies

|u(x)| ≤ −
∫

B
|u| dy.

Also the derivatives have integral estimates.

Theorem 4.21 (Derivative estimates). Let u be harmonic in Ω. Then

|Diu(x0)| ≤
c1

rN+1

∫
B(x0,r)

|u| dy,∣∣Di ju(x0)
∣∣≤ c2

rN+2

∫
B(x0,r)

|u| dy,

where ci = c(N, i) for B(x0,r)⋐ Ω.

Proof. The idea is to differentiate under the integral. If we can justify ∗ below, we get

|Diu(x0)|
∗
=

∣∣∣∣−∫B(x0,r/2)
Diu(y)dy

∣∣∣∣ ∣∣∣Gauss-Green

=
|∂B(x0,r/2)|
|B(x0,r/2)|

∣∣∣∣−∫
∂B(x0,r/2)

uνi dS
∣∣∣∣

≤ c
r

max
∂B(x0,r/2)

|u| .

Let x ∈ ∂B(x0,r/2) and observe that B(x,r/2)⊂ B(x0,r) so that

|u(x)|=
∣∣∣∣ 1
|B(x,r/2)|

∫
B(x,r/2)

udy
∣∣∣∣

≤ |B(x,r)|
|B(x,r/2)|

−
∫

B(x0,r)
|u| dy

= c−
∫

B(x0,r)
|u| dy.
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Combining the two estimates yields the result if we can justify ∗. To show ∗, observe

Diu(x0) =
∂

∂x0i

−
∫

B(0,r/2)
u(x0 + y)dy =−

∫
B(0,r/2)

Diu(x0 + y)dy

where the last equality follows from the fact that for any ε > 0 there is h > 0 such that∣∣∣∣∫B(0,r/2)
∂iu(x0 + y+hei)−

u(x0 + y+hei)−u(x0 + y)
h

dy
∣∣∣∣≤ ε

as in the proof of Theorem 4.6. Another alternative is to observe that Di∆u = ∆Diu = 0
so that also the partial derivatives satisfy the mean value property in ∗.

Then for the second derivatives we get similarly as above by slightly adjusting radii∣∣Di ju
∣∣= ∣∣∣∣−∫B(x0,r/2)

Di judx
∣∣∣∣

=
|∂B(x0,r/2)|
|B(x0,r/2)|

∣∣∣∣−∫B(x0,r/2)
Diuν j dS

∣∣∣∣
≤c

r
max

∂B(x0,r/2)
|Diu| ≤

cc1

rN+2

∫
B(x0,r)

|u| dy.

□

Example 4.22. Let Ω = (0,1) and u harmonic, then u(x) = ax+b and let for simplicity
a,b ≥ 0. Observe

|Dui|= a,
1
r2

∫ x+r

x−r
|u| dy =

4axr
2r2 +

2b
r

≥ 2ax
r

≥ 2a

assuming (x− r,x+ r)⊂ Ω.

Observe that the result is independent of the domain. Also observe that by u(x) =
ax+b immediately tells that it is natural to have dependence of the size of u on the right
hand side.

Next we utilize the observation that the estimate is independent of the domain.

Corollary 4.23 (Liouville theorem). If u is bounded and harmonic in RN , then u is a
constant.

Proof. Since there is a constant M ≥ 0 such that |u| ≤ M, by the previous theorem

|Diu(x)| ≤
c

rN+1

∫
B(x,r)

|u| dy ≤ c
r
−
∫

B(x,r)
M dy =

c1M
r

→ 0

as r →∞, we see that Diu= 0 at every point for any i= 1, . . . ,N. Thus u is a constant. □

Corollary 4.24 (Uniqueness in RN). Let f ∈C2
0(RN), N ≥ 3. Then every bounded solu-

tion u ∈C2(RN) to
−∆u = f ,

is of the form

u(x) = (Φ∗ f )(x)+ c =
∫
RN

Φ(x− y) f (y)dy+ c,

where c is a constant.
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Proof. Let v(x) =
∫
RN Φ(x− y) f (y)dy. We have shown that v ∈ C2(RN) and −∆v = f .

Let spt f ⊂ B(0,r). There is M such that |v| ≤ M in B(0,2r). Let x ̸∈ B(0,2r). Then

|v(x)| ≤

∣∣∣∣∣
∫
RN

Φ( x− y
|·|>r if y∈spt f

) f (y)dy

∣∣∣∣∣≤ cr2−N
∫
RN

| f | dy ≤ cr2−N

i.e. v is a bounded solution. Let u be another bounded solution. Then

∆(u− v) = 0

and Liouville’s theorem implies that u− v = c. □

Remark 4.25. Previous theorem is false without boundedness.

Theorem 4.26. Let u be harmonic in Ω. Then u is real analytic in Ω.

Proof. (Sketch) We have shown that u ∈ C∞ and we want to show that u can be even
presented by a convergent power series around a point.

Set

RN(x) := u(x)−
N−1

∑
k=0

∑
|α|=k

Dαu(x0)(x− x0)
α

α!
,

where (x− x0)
α = (x− x0)

α1
1 · · ·(x− xN)

αN
N . By Taylor’s theorem

RN(x) = ∑
|α|=N

Dαu(x0 + t(x− x0))(x− x0)
α

α!

for some t ∈ [0,1]. One could establish higher derivative estimate with a sharp coefficient
similarly as in Theorem (4.21), and plugging in such an estimate, we see that

|RN(x)| → 0.

□

Theorem 4.27 (Harnack’s inequality). Let u ≥ 0 be harmonic in Ω and B(x0,4r) ⊂ Ω.
Then for c = 3N it holds that

sup
B(x0,r)

u ≤ c inf
B(x0,r)

u.

Proof. Let x,y ∈ B(x0,r), then by mean value property

u(y) =−
∫

B(y,3r)
udz ≥ |B(x,r)|

|B(y,3r)|
−
∫

B(x,r)
udz =

1
3N u(x).

The claim follows since x,y ∈ B(x0,r) were arbitrary. □

Corollary 4.28 (Harnacks inequality, general form). Let u ≥ 0 be harmonic in Ω and
V ⋐ Ω be a connected open set. Then there is c = c(N,V,Ω)> 0 such that

sup
V

u ≤ c inf
V

u.

Proof. Idea: covering argument. Let r = dist(V ,∂Ω)/4,

V ⊂
{

B(xγ ,r)
}

γ
.

By compactness, there is a finite subcover

V ⊂ {B(xi,r)}n
i=1 .
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Then for x,y ∈V , use Harnack n times to obtain

u(y)≥ (1/3)Nnu(x).

Since n depends only on geometry of V and Ω, we have (1/3)Nn =C(N,V,Ω). □

Remark 4.29. The assumption u ≥ 0 is essential: let Ω = (−1,1) and u(x) = x.

Harnack’s inequality implies strong maximum principle. We have already proved the
maximum principle using the mean value property, but for many equations Harnack’s
inequality holds but mean value property does not.

Corollary 4.30 (Strong max principle). Let Ω be a bounded, open and connected set
and u ∈C2(Ω)∩C(Ω) harmonic in Ω. Then, if there is x0 ∈ Ω such that

u(x0) = max
Ω

u

it follows that

u is constant in Ω.

Proof. Let M = u(x0) = max
Ω

u and set

v := M−u.a

Then v is harmonic, v ≥ 0 and v(x0) = 0. Choose connected V ∋ x0 s.t. V ⋐ Ω. Then

0 ≤ sup
V

v ≤C inf
V

v ≤Cv(x0) = 0.

□

4.6. Green’s functions. We are going to look for a so called Green’s function that helps
to represent the solution to the boundary value Poisson problem.

Theorem 4.31. Let ∂Ω ∈C1, u ∈C2(Ω). If u solves{
−∆u = f in Ω

u = g on ∂Ω,

then

u(x) =
∫

Ω

f (y)G(x,y)dy−
∫

∂Ω

g(y)
∂

∂ν
G(x,y)dS(y),

where G is Green’s function.

Remark 4.32. Observe that this resembles Φ since u = Φ∗ f solved

−∆u = f

in RN under suitable assumptions. Now in addition we have boundary conditions.
The theorem says: if there is such u and we can find G, then we have solved the

Poisson problem. However, finding G can be difficult and usually we can derive explicit
formulas in the simple domains (like ball, later) only.
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Derivation of Green’s function. First recall that from Gauss-Green formula we obtain
the integration by parts formula∫

U
uDiϕ dy =

∫
∂U

ϕuνi dS(y)−
∫

U
ϕDiudy. (4.8)

If u,ϕ ∈C2(U), we can use this twice to obtain∫
U

u∆ϕ dy =
N

∑
i=1

∫
U

uDi(Diϕ)dy

=
N

∑
i=1

(
∫

∂U
uDiϕνi dS(y)−

∫
U

DiuDiϕ dy)

=
N

∑
i=1

(
∫

∂U
uDiϕνi dS(y)−

∫
∂U

ϕDiuνi +
∫

U
ϕDi(Diu)dy)

=
∫

∂U
u

∂ϕ

∂ν
dS(y)−

∫
∂U

ϕ
∂u
∂ν

dS(y)+
∫

U
ϕ∆u,

which is called Green’s formula.
Let now Ω be bounded, ∂Ω ∈ C1 and suppose that u ∈ C2(Ω) solves the Poisson

problem. Let Bε(x)⋐ Ω and set

Φ
x(y) := Φ(y− x) for all y ∈ RN \{0} .

From Green’s formula we obtain∫
Ω\B(x,ε)

u∆Φ
x dy−

∫
Ω\B(x,ε)

Φ
x
∆udy

=
∫

∂ (Ω\B(x,ε))
u

∂Φx

∂ν
dS(y)−

∫
∂ (Ω\B(x,ε))

Φ
x ∂u
∂ν

dS(y), (4.9)

where ν is the exterior unit normal vector to Ω\Bε(x) i.e. it points towards x on ∂B(x,ε)
and outwards from Ω on ∂Ω. Thus we have∫

∂B(x,ε)
u

∂Φx

∂ν
dS(y) =

∫
∂B(0,ε)u(x− y)

∂Φ

∂ν
(y)dy

∣∣∣c.f. (4.5)

=−
∫

∂B(0,ε)
u(x)dy → u(x) as ε → 0. (4.10)

Similarly, using that the derivatives of u are bounded (since u ∈C2(Ω)), we obtain∣∣∣∣∫
∂B(x,ε)

Φ
x ∂u
∂ν

dS(y)
∣∣∣∣≤ cε

N−1 max
∂B(x,ε)

|Φx| ≤ cε
N−1

{
εN−2, N ≥ 3,
|logε| , N = 2,

→ 0 as ε → 0.

(4.11)

Letting ε → 0, it follows from (4.10) and (4.11) that the right-hand side of (4.9) con-
verges to

u(x)+
∫

∂Ω

u
∂Φx

∂ν
dS(y)−

∫
∂Ω

Φ
x ∂u
∂ν

dS(y).

On the other-hand, the left-hand side of (4.9) readily converges to

∫
Ω

u

=0︷︸︸︷
∆Φ

x dy−
∫

Ω

Φ
x
∆udy =−

∫
Ω

Φ
x
∆udy.
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Hence we obtain

u(x) =−
∫

∂Ω

u
∂Φx

∂ν
dS(y)+

∫
∂Ω

Φ
x ∂u
∂ν

dS(y)−
∫

Ω

Φ
x
∆udy (4.12)

for any x ∈ Ω and u ∈C2(Ω).
Since the formulation of a Poisson problem gives us −∆u = f in Ω and u = g on ∂Ω,

formula (4.12) almost lets us solve u. However, the middle term is a problem since it
is not directly prescribed by f or g. To deal with this term, the idea is to introduce a
corrector ϕx = ϕx(y) that solves the boundary value problem{

∆ϕx = 0 in Ω,

ϕx = Φx(y) = Φ(y− x) on ∂Ω.
(4.13)

Then by Green’s formula we see that the middle term in (4.12) satisfies∫
∂Ω

Φ
x ∂u
∂ν

dS(y) =
∫

Ω

ϕ
x
∆udy+

∫
∂Ω

u
∂ϕx

∂ν
dS(y).

Plugging this into (4.12) we obtain

u(x) =
∫

∂Ω

u(
∂ϕx

∂ν
− ∂Φx

∂ν
)dS(y)+

∫
Ω

(ϕx −Φ
x)∆udy

=
∫

∂Ω

g
∂

∂ν
(ϕx −Φ(y− x))dS(y)+

∫
Ω

(Φ(y− x)−ϕ
x) f dy, (4.14)

where we recalled definition of Φx and used that u solves the Poisson problem. Observe
that the right-hand side of (4.14) is independent of u and can be calculated provided that
Ω is so regular that ϕx can be solved for any x∈Ω. This leads to the following definition.

Definition 4.33. Green’s function for the region Ω is

G(x,y) = Φ(y− x)−ϕ
x(y), x,y ∈ Ω,x ̸= y.

Remark 4.34.

• Observe that (4.14) can be now written as

u(x) =
∫

Ω

G(x,y) f (y)dy−
∫

∂Ω

∂

∂ν
G(x,y)g(y)dS(y).

• If {
∆u = f = 0 in Ω,

u = g on ∂Ω,

we get the Poisson formula

u(x) =
∫

∂Ω

K(x,y)g(y)dS(y),

where

K(x,y) =−∂G(x,y)
∂ν

is called the Poisson kernel.
• Formally −∆yG(x,y) = −∆y(Φ(y− x)− ϕx(y)) = δx − 0 in Ω, and G(x,y) =

Φ(y− x)−Φ(y− x) = 0 for y ∈ ∂Ω, i.e.{
−∆yG(x,y) = δx, y ∈ Ω,

G(x,y) = 0, y ∈ ∂Ω.
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4.7. Green’s function on the half space. Denote

RN
+ = {x = (x1, . . . ,xN) : xN > 0} .

Reflection of x = (x1, . . . ,xN) is

x∗ = (x1 . . . ,−xN).

Let
ϕ

x(y) = Φ(y− x∗) = Φ(y− x1, . . . ,yN−1 − xN−1,yN + xN),

where Φ is the fundamental solution. Observe that ϕx is just translation of Φ so that the
singularity appears at the reflection of x. Then we have{

∆ϕx(y) = 0 if y ∈ RN
+,

ϕx(y) = Φ(y− x∗) = Φ(y− x) if y ∈ ∂RN
+,

as required in (4.13). The Green’s function is therefore

G(x,y) = Φ(y− x)−ϕ
x(y) = Φ(y− x)−Φ(y− x∗).

If y ∈ ∂RN
+, then |y− x|= |y− x∗|, ν = (0, . . . ,0,−1) and (assuming N ≥ 3)

∂G(x,y)
∂ν

= DG(x,y) ·ν =−DNG(x,y)

=−DNΦ(y− x)+DNΦ(y− x∗)

= cN(2−N)(−|y− x|1−N yN − xN

|y− x|
+ |y− x|1−N yN + xN

|y− x|
)

=
1

Nα(N)

2xN

|y− x|N
.

Thus the solution to {
∆u = 0 in RN

+,

u = g on ∂RN
+,

should be

u(x) =−
∫

∂RN
+

∂G(x,y)
∂ν

g(y)dy =
2xN

Nα(N)

∫
∂RN

+

g(y)

|y− x|N
dy =:

∫
∂RN

+

K(x,y)g(y)dy.

(4.15)
This should also be the case for N = 2. Let us verify that u really is a solution.

Theorem 4.35. If g ∈C(∂RN
+) is bounded and u as in (4.15), then

(1) u ∈C∞(RN
+), u is bounded, ∆u = 0 in RN

+.
(2) u(xn)→ g(x) whenever xn → x ∈ ∂RN

+.

Proof. (1): Sketch (smoothness and details for blow through difference quotients as
before):

∆u(x) =∆x

∫
∂RN

+

K(x,y)g(y)dy =
∫

∂RN
+

∆xK(x,y)g(y)dy = 0,

where we used that K(x,y) is obviously smooth on ∂RN
+ if x ∈ RN

+.
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(2): Let x0 ∈ ∂RN
+, ε > 0, x ∈ RN

+. Then

|u(x)−g(x0)|=

∣∣∣∣∣∣∣∣∣
∫

∂RN
+

K(x,y)g(y)dy−g(x0)
∫

∂RN
+

K(x,y)︸ ︷︷ ︸
=1

∣∣∣∣∣∣∣∣∣
≤
∫

∂RN
+

K(x,y) |g(y)−g(x0)| dy

=
∫

∂RN
+∩B(x0,δ )

K(x,y) |g(y)−g(x0)| dy+
∫

∂RN
+\B(x0,δ )

K(x,y) |g(y)−g(x0)| dy

=: I + J,

where we omit the computation
∫

∂RN
+

K(x,y)dy = 1. Then by continuity of g

I ≤
∫

∂RN
+∩B(x0,δ )

K(x,y) |g(y)−g(x0)| dy

≤
∫

∂RN
+∩B(x0,δ )

K(x,y)ε dy ≤ ε.

Further if

|x− x0|< δ/2, |y− x0| ≥ δ

then

|y− x0| ≤|y− x|+ |x− x0|

≤|y− x|+ δ

2

≤|y− x|+ 1
2
|y− x0| ,

so that
1
2
|y− x0| ≤ |y− x| .

Using this

J =
∫

∂RN
+\B(x0,δ )

K(x,y) |g(y)−g(x0)| dy

≤ max
y∈RN

+

2 |g(y)|
∫

∂RN
+\B(x0,δ )

K(x,y)dy

= max
y∈RN

+

2 |g(y)| 2xN

Nα(N)

∫
∂RN

+\B(x0,δ )
|y− x|−N dy

≤ cxN

∫
∞

δ

∫
∂RN

+∩∂B(x0,r)
|y− x0|−N dS(y)dr

= cxN

∫
∞

δ

crN−2r−N dr = cxNδ
−1 → 0

as xN → 0. Thus we have shown that |u(x)−u(x0)| ≤ 2ε when |x− x0| is small enough.
□
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4.8. Green’s function on the ball B(0,1). We know Φ(y− x) but need to solve the
corrector: {

∆ϕx(y) = 0 y ∈ B(0,1),
ϕx(y) = Φ(y− x) y ∈ ∂B(0,1),

to find G(x,y) = Φ(y− x)−ϕx(y).
We define an inversion through ∂B(0,1) for x ̸= 0

x∗ =
x
|x|

1
|x|

=
x

|x|2
.

If y ∈ ∂B(0,1), x ̸= 0, then

|x|2 |y− x∗|2 = |x|2 (|y|2 −2x∗ · y+ |x∗|2) = |x|2 (|y|2 −2
x

|x|2
· y+ 1

|x|2
)

= |x|2 −2x · y+1 = |x− y|2 . (4.16)

Then for y ∈ ∂B(0,1) and x ̸= 0, N ≥ 3,

Φ(|x|(y− x∗)) = cN |x(y− x∗)|2−N = cN |x− y|2−N = Φ(y− x)

and

∆yΦ(|x|(y− x∗)) = |x|2 ∆Φ = 0

so that

ϕ
x(y) = Φ(|x|(y− x∗)).

Thus

G(x,y) = Φ(y− x)−Φ(|x|(y− x∗)).

Also holds when N = 2.

Example 4.36. Consider {
∆u = 0 in B(0,1),
u = g on ∂B(0,1).

Then

u(x) =−
∫

∂B(0,1)
g(y)

∂

∂ν
G(x,y)dS(y),

with

DyG(x,y) =DyΦ(y− x)−DyΦ(|x|(y− x∗))

=cN(2−N)(|y− x|1−N y− x
|y− x|

− ||x|(y− x∗)|1−N |x|(y− x∗) |x|
|x| |y− x∗|

)

(4.16)
= cN(2−N)(

y− x

|y− x|N
− |x|2 y− x

|y− x|N
)

= cN(2−N)
y(1−|x|2)
|y− x|N

.
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Thus
∂G(x,y)

∂ν
= DyG(y,x) ·ν = DyG(y,x) · y

|y|

= cN(2−N)
y(1−|x|2)
|y− x|N

· y
|y|

= cN(2−N)
1−|x|2

|y− x|N
.

Recalling that cN = 1/(N(N −2)α(N)), we have arrived at the Poisson’s representation
formula

u(x) =
1−|x|2

Nα(N)

∫
∂B(0,1)

g(y)

|y− x|N
dS(y).

Origin should be checked separately but we omit this.
Next we consider {

∆v = 0, B(0,r),
v = g ∂B(0,r).

Then u(x) := v(xr) solves{
∆xu(x) = r2∆v(xr) = 0 x ∈ B(0,1),
u(x) = v(xr) = g(xr) x ∈ ∂B(0,1).

Thus by the previous formula

u(x) =
1−|x|2

Nα(N)

∫
∂B(0,1)

g(yr)

|y− x|N
dS(y)

so that setting z = xr

v(z) = u(z/r) =
1−|z|2 /r2

Nα(N)

∫
∂B(0,1)

g(yr)

|y− z/r|N
dS(y)

=
1−|z|2 /r2

Nα(N)

∫
∂B(0,r)

g(y)

|y− z|N
rN

rN−1 dS(y)

=
r2 −|z|2 /r2

Nα(N)

∫
∂B(0,r)

g(y)

|y− z|N
dS(y).

4.9. Variational method. Consider the problem{
−∆u = f in Ω,

u = g on ∂Ω.
(4.17)

We show that solutions to (4.17) can be characterized as the minimizer of a certain
functional. This is the so called variational principle sometimes also called Dirichlet’s
principle.

Definition 4.37 (Energy/variational integral). The energy functional (or variational in-
tegral) corresponding to (4.17) is defined by

I(w) :=
∫

Ω

1
2
|Dw|2 − f wdx,

where w ∈ A :=
{

w ∈C2(Ω) : w = g on ∂Ω
}

is the set of admissible functions.



34 PARTIAL DIFFERENTIAL EQUATIONS 2021, LECTURE NOTES

Theorem 4.38 (Variational principle). A function u∈C2(Ω) solves the Dirichlet problem
(4.17) if and only if

I(u) = min
w∈A

I(w).

Proof. “ =⇒ ” Observe first that for vectors ξ ,η ∈ RN we have

0 ≤ |ξ −η |2 = (ξ −η) · (ξ −η) = |ξ |2 −2ξ ·η + |η |2

so that

ξ ·η ≤ 1
2
|ξ |2 + 1

2
|η |2 . (4.18)

Let now w ∈ A . Then, integrating by parts, we obtain

0 =
∫

Ω

(−∆u− f )(u−w)dx =
∫

Ω

Du ·D(u−w)− f (u−w)dx,

where the boundary term vanished since u−w = g−g = 0 on ∂Ω. Thus, using (4.18),
we get ∫

Ω

|Du|2 − f udx =
∫

Ω

Du ·Dw− f wdx

≤
∫

Ω

1
2
|Dw|2 + 1

2
|Du|2 − f wdx,

so that

I(u) =
∫

Ω

1
2
|Du|2 − f udx ≤

∫
Ω

1
2
|Dw|2 − f wdx = I(w).

“ ⇐= ” Let ϕ ∈C∞
0 (Ω). We set

Ψ(ε) := I(u+ εϕ)

for all ε ∈ R. Observe that Ψ is well defined since u+ εϕ ∈ A . Moreover, since Ψ

reaches its minimum when ε = 0, we have Ψ′(0) = 0. Furthermore,

Ψ(ε) =
∫

Ω

1
2
|D(u+ εϕ)|2 − (u+ εϕ) f dx

=
∫

Ω

1
2
|Du|2 + εDu ·Dϕ + ε

2 |Dϕ|2 − (u+ εϕ) f dx.

Therefore

0 = Ψ
′(ε)
∣∣∣
ε=0

=
∫

Ω

Du ·Dϕ +2ε |Dϕ|2 −ϕ f dx
∣∣∣
ε=0

=
∫

Ω

Du ·Dϕ −ϕ f dx
∣∣∣integrate by parts

=
∫

Ω

(−∆u− f )ϕ dx

for every ϕ ∈C∞
0 (Ω). As we have shown in the exercises, this implies −∆u− f = 0. □

Remark 4.39. Existence of solutions to the Dirichlet problem could be proven by show-
ing that the minimizer of the variational integral exists. This is done in “PDE2”.
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4.10. Eigenvalue problem / Helmholz equation. Consider u ∈C2(Ω), ∂Ω ∈C1.

Definition 4.40. If the problem {
−∆u = λu in Ω,

u = 0 on ∂Ω,

with λ > 0 has a nontrivial solution (i.e. u ̸≡ 0), then λ is called an eigenvalue of ∆ in
Ω. The corresponding u is an eigenfunction.

Remark 4.41.
(1) If u is an eigenfunction, so is cu.
(2) If λ ≤ 0, then there is no nontrivial solution (c.f. exercise 4, problem 6).

Definition 4.42. We define the Rayleigh quotient

Q(w) :=
∫

Ω
|Dw|2 dx∫
Ω

w2 dx

for all admissible functions w ∈AQ :=
{

w ∈C2(Ω) : w = 0 on ∂Ω,w ̸≡ 0
}

. We also set

m := inf
w∈AQ

Q(w)

Remark. From Sobolev-Poincaré inequality it follows that (done in “PDE2”)

m ≥ N
4diam(Ω)

> 0.

Lemma 4.43. If λ is an eigenvalue of ∆, then λ ≥ m.

Proof. Since
−∆u = λu,

we have by integration by parts∫
Ω

λuudx =
∫

Ω

−∆uudx =
∫

Ω

|Du|2 dx.

Thus

m ≤
∫

Ω
|Du|2 dx∫
Ω

u2 dx
= λ . □

Theorem 4.44 (Rayleigh’s principle). Suppose that a minimizer of the Rayleigh quotient
exists, i.e. that there is u ∈ AQ such that

Q(u) = inf
w∈AQ

Q(w) =: m

then m is the smallest eigenvalue of ∆ and u is an corresponding eigenfunction.

Proof. Let ϕ ∈C∞
0 (Ω), ε ∈ R and set

Ψ(ε) := Q(u+ εϕ) =

∫
Ω
|D(u+ εϕ)|2 dx∫
Ω
(u+ εϕ)2 dx

.

By the assumption Ψ has a minimum at ε = 0 and therefore Ψ′(0) = 0. Thus

0 = Ψ
′(0) =

∫
Ω

2Du ·Dϕ dx
∫

Ω
u2 dx−

∫
Ω
|Du|2 dx

∫
Ω

2uϕ

(
∫

Ω
u2 dx)2 .
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It follows that ∫
Ω

Du ·Dϕ dx =
∫

Ω
|Du|2 dx∫
Ω

u2 dx

∫
Ω

uϕ dx

= m
∫

Ω

uϕ dx.

Thus by integration by parts∫
Ω

−∆uϕ dx =
∫

Ω

Du ·Dϕ dx = m
∫

Ω

uϕ dx.

Since ϕ ∈C∞
0 (Ω) was arbitrary, it follows that −∆u = mu. Thus m is an eigenvalue of ∆

and by Lemma 4.43 it has to be the smallest one. □

Showing that the minimizer of Rayleigh quotient exists is beyond our scope, see for
example Jost: Partial differential equations. Taking the existence for granted, Theorem
4.44 then gives us the smallest eigenvalue (also called the principal eigenvalue or first
eigenvalue) of ∆, which is often denoted by λ1.

Theorem 4.45. Let u be an eigenfunction corresponding to λ1. Then either u > 0 or
u < 0 in Ω.

Proof. (Idea only; details are beyond our scope) Let u be an eigenfunction corresponding
to λ1. By continuity it suffices to show that u(x) ̸= 0 for all x, so suppose on the contrary
that u(x0) = 0 for some x0. Let v be the minimizer of the Rayleigh quotient. Then by
Theorem 4.44 we have

Q(v) = inf
w∈AQ

Q(w) = λ1 = Q(u), (4.19)

where the last identity follows by integration by parts from the assumption that

−∆u = λ1u.

Equation (4.19) means that also u minimizes the Rayleigh quotient. The previous re-
sults hold even if the class of admissible functions AQ is replaced by a suitable class of
“weakly differentiable” functions. This way one observes that also w := |u| is a mini-
mizer of the Rayleigh quotient, since in the weak sense we have

Dw =

{
Du, if u ≥ 0,
−Du, if u ≤ 0,

so that Q(w) = Q(|u|) = Q(u). By proving a Harnack’s inequality for eigenfunctions,
one obtains that w ≡ 0 in Ω. But this is against the definition of eigenfunction. □

Theorem 4.46. The first eigenspace is one dimensional (i.e. the first eigenvalue is sim-
ple): if u and v are two eigenfunctions corresponding to λ1, then

u = kv in Ω

for some k ∈ R.

Proof. Fix x0 ∈ Ω and set
k := u(x0)/v(x0).

Then w := u− kv satisfies

−∆w =−∆u+ k∆v = λ1u− kλ1v = λ (u− kv) = λ1w.
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Thus, if w ̸≡ 0, then w is an eigenfunction corresponding to λ1 and by Theorem 4.45
we must have w > 0 or w < 0. But neither are possible, since w(x0) = 0. Thus we have
w ≡ 0 and so u(x) = kv(x) for all x ∈ Ω. □

Theorem 4.47. Let λ ,µ be the eigenvalues corresponding to the eigenfunctions u,v ∈
C2(Ω). Then either

λ = µ

or ∫
Ω

uvdx = 0.

That is to say, either two eigenfunctions correspond to the same eigenvalue or they are
orthogonal in the Hilbert space L2(Ω).

Proof. We have

λ

∫
Ω

uvdx =−
∫

Ω

∆uvdx
∣∣∣integration by parts

=
∫

Ω

Du ·Dvdx
∣∣∣integration by parts

=−
∫

Ω

u∆vdx

= µ

∫
Ω

uvdx

and so (λ −µ)
∫

Ω
uvdx = 0. □

Remark 4.48.
(1) We state without a proof that the set of eigenvalues (spectrum) is countably infi-

nite and discrete, i.e.

λ1 < λ2 < λ3 < .. . ,λi → ∞.

5. HEAT EQUATION

We consider the heat equation
∂tu = ∆u

and
∂tu = ∆u+ f ,

where u = u(x, t) depends on space and time, ∂tu is time derivative and ∆ is taken only
respect to the space variable x:

∆u(x, t) =
N

∑
i=1

∂ 2u(x, t)
∂xi

=
N

∑
i=1

Diiu.

Dirichlet problem: {
∂tu = ∆u in ΩT := Ω× (0,T ),
u = g on ∂pΩT ,

where ∂pΩT := Ω×{0}∪ (∂Ω× [0,T ]) is called the parabolic boundary.
Cauchy problem: {

∂tu = ∆u in RN × (0,T ),
u = g on RN .
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Example 5.1. Harmonic function u, ∆u = 0 is a solution u(x, t) := u(x) (constant in
time) ∂tu = 0 = ∆u.

Example 5.2 (Time evolution of diffusion). Change is caused by the diffusion:∫
U

∂tudx = ∂t

∫
U

udx︸ ︷︷ ︸
change of amount of heat

=−
∫

∂U
F ·ν dS︸ ︷︷ ︸

net flux

div-thm
= −

∫
U

div(F)dx,

where ν is the exterior unit normal vector. Thus

∂tu =−div(Du).

If again the flux density is proportional to the gradient (heat flows from hot to cold,
proportional to difference)

F =−aDu
and setting for simplicity a = 1 we get

∂tu =−div(−Du) = ∆u.

If in addition, there is a heat source, change is flux plus the added heat:∫
U

∂tudx = ∂t

∫
U

udx︸ ︷︷ ︸
change of amount of heat

=−
∫

∂U
F ·ν dS︸ ︷︷ ︸

net flux

+
∫

U
f dx

div-thm
=

∫
U
−div(F)dx+

∫
U

f dx,

i.e.
∂tu = ∆u+ f .

More concretely, take 1D steel rod on Ω = (0,1) that is insulated except at the ends

∂tu = ∂x∂xu,

u(x,0) = g(x,0) initial temperature distribution

u(0, t) = g(0, t) known outside temperature at x = 0

u(1, t) = g(1, t) known outside temperature at x = 1.

Then solution u(x, t) tells the temperature at x at a later time t in the rod.

5.1. Fundamental solution. It is known that for parabolic equations it is useful to
search solutions in self-similar form: Assume

u(x, t) = λ
αu(λ β x,λ t)

and set λ = t−1. Then

u(x, t) = t−αu(t−β x,1) =: t−αv(t−β x)

so that we look for the solution in the form

u(x, t) = t−αv(t−β x), |x| ̸= 0.

There are other ways to get the fundamental solution without such a guess but this is
quick.

Then

∂tu(x, t) =−αt−α−1v(t−β x)− t−α
βxt−β−1 ·Dv(t−β x)

∣∣∣y = t−β x

=−αt−α−1v(y)− t−α−1
βy ·Dv(y)
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and
∆u(x, t) = t−α−2β

∆v(t−β x) = t−α−2β
∆v(y).

Plugging these into heat equation we get

0 = αt−α−1v(y)+ t−α−1
βy ·Dv(y)+ t−α−2β

∆v(y).

We seek to simplify and select β = 1/2, thus

0 = αt−α−1v(y)+ t−α−1 1
2

y ·Dv(y)+ t−α−1
∆v(y)

=⇒ 0 = αv(y)+
1
2

y ·Dv(y)+∆v(y).

To further simplify, let us look for a radial solution w such that v(y) = w(|y|) (as for
Laplace), so that in particular y ·Dv(y) = y ·w′(|y|) y

|y| and recall radial Laplacian

0 = αw(r)+
1
2

rw′(r)+w′′(r)+
N −1

r
w′(r),

where r = |y|. Now, taking α = N/2, we have

0 = αw+
1
2

rw′+w′′+
N −1

r
w′

= (
1
2
(rNw)+ rN−1w′)′r1−N .

Thus
1
2
(rNw)+ rN−1w′ = a.

Assume to again simplify that a = 0 and thus

w′ =−1
2

rw

which has a solution
w(r) = ce−r2/4.

Recalling all the selections

u(x, t) = t−αv(t−β x) = t−
N
2 w(t−

1
2 |x|) = c

tN/2 e
−|x|2

4t .

Definition 5.3 (Fundamental solution to heat equation). The function

Φ(x, t) =

 1
(4πt)N/2 e−

|x|2
4t , (x, t) ∈ RN × (0,T ),

0, t ≤ 0

is the fundamental solution of the heat equation.

The following lemma explains the selection of the constant.

Lemma 5.4. For t > 0 we have ∫
RN

Φ(x, t) = 1.
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Proof. We compute∫
RN

Φ(x, t) =
1

(4πt)N/2

∫
RN

e−
|x|2
4t

∣∣∣y = x/(4t)1/2,dy = dx/(4t)N/2

=
1

πN/2

∫
RN

e−|y|2 dy
∣∣∣ |y|2 = N

∑
i=1

y2
i

=
1

πN/2 Π
N
i=1

∫
∞

−∞

e−y2
i dyi

= 1,

where we used that

(
∫

∞

−∞

e−x2
dx)2 =

∫
∞

−∞

e−x2
dx
∫

∞

−∞

e−y2
dy

=
∫

∞

−∞

e−y2
∫

∞

−∞

e−x2
dxdy

=
∫

∞

−∞

∫
∞

−∞

e−(x2+y2) dxdy

=
∫

∞

0

∫
∂B(0,r)

e−r2
dSdr

=
∫

∞

0
2πre−r2

dr

= π.

□

5.2. Cauchy problem.

Theorem 5.5 (Cauchy problem for heat equation ). Let g∈C(RN) be a bounded function
and

u(x, t) = (Φ∗g)(x, t) =
∫
RN

Φ(x− y, t)g(y)dy =
1

(4πt)N/2

∫
RN

e−
|x−y|2

4t g(y)dy,

t > 0. Then
(1) u ∈C2(RN × (0,∞))
(2) ∂tu−∆u = 0 in RN × (0,∞)
(3) If a sequence (xn, tn) ∈ RN × (0,∞) converges to (x0,0), then u(xn, tn)→ g(x0).

Proof. (1): (Sketch) Similarly as in the proof of Theorem 4.6, we can change the order
of differentiation and integration to see that

Di ju = Di jΦ∗g ∈C(RN × (0,∞)),

∂tu = ∂tΦ∗g ∈C(RN × (0,∞)).

Thus u ∈C2(RN × (0,∞)).
(2): By proof of (1) and linearity of convolution, we have

∂tu−∆u = ∂tΦ∗g−∆Φ∗g = (∂tΦ−∆Φ︸ ︷︷ ︸
=0

)∗g = 0.

(3): If x0 ∈ RN , ε > 0, then there is δ > 0 such that

|g(y)−g(x0)|< ε if |y− x0|< δ .
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By Lemma 5.4 we have

|u(x, t)−g(x0)|=
∣∣∣∣∫RN

Φ(x− y, t)(g(y)−g(x0))dy
∣∣∣∣

≤
∫
RN∩B(x0,δ )

Φ(x− y, t) |(g(y)−g(x0))| dy

+
∫
RN\B(x0,δ )

Φ(x− y, t) |(g(y)−g(x0))| dy

=: I + J.

Now

I ≤ ε

∫
RN∩B(x0,δ )

Φ(x− y, t)dy ≤ ε.

Also, like in the derivation of Green’s function on plane, we observe that

|x− x0|< δ/2, |y− x0| ≥ δ =⇒ |y− x| ≥ 1
2
|y− x0| .

Thus

J ≤ 2max
RN

|g|
∫
RN\B(x0,δ )

Φ(x− y, t)dy

≤ c
tN/2

∫
RN\B(x0,δ )

e−
|x−y|2

4t dy

≤ c
tN/2

∫
RN\B(x0,δ )

e−
( 1

2 |y−x0|)
2

4t dy

=
c

tN/2

∫
RN\B(x0,δ )

e−
|y−x0|2

16t dy
∣∣∣z = (y− x0)/

√
t,dz = t−N/2dy

= c
∫
RN\B(0,δ/

√
t)

e−
|z|2
16 dy

→ 0 as t → 0.

Thus first choosing δ small enough and then t > 0 small enough, we get

|g(y)−g(x0)| ≤ I + J ≤ ε + J ≤ 2ε.

□

Remark 5.6.
(1) It is often denoted that{

∂tΦ−∆Φ = 0 in RN × (0,∞),

Φ = δ0 on RN ×{t = 0} ,

where δ0 is Dirac’s delta at the origin.
(2) Observe that if g > 0 at any point, then

u(x, t) =
1

(4πt)N/2

∫
RN

e−
|x−y|2

4t g(y)dy > 0

for any (x, t) ∈ RN × (0,∞). This means that the heat equation has an infinite
speed of propagation.
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5.3. Inhomogeneous Cauchy problem. Consider{
∂tu−∆u = f in RN × (0,∞),

u = 0 on RN ×{t = 0} .

We use the so called Duhamel principle and define

u(x, t) =
∫ t

0

∫
RN

Φ(x− y, t − s) f (y,s)dyds

=
∫ t

0

1
(4π(t − s))N/2

∫
RN

e−
|x−y|2
4(t−s) f (y,s)dyds. (5.1)

Theorem 5.7. Suppose that f has compact support, f ,D f , D2 f , ∂t f continuous. Then
for 5.1 it holds that

(1) u, Du, D2u, ∂tu are continuous in RN × (0,∞)
(2) ∂tu−∆u = f in RN × (0,∞)
(3) If a sequence (xn, tn) ∈ RN × (0,∞) converges to (x0,0), then u(xn, tn)→ 0.

Proof. (1): (Sketch) We want to avoid the singularity and change variables

u(x, t) =
∫ t

0

∫
RN

Φ(y,s) f (x− y, t − s)dyds

so that we may change the order of integration and differentiation

∂tu(x, t) =
∫ t

0

∫
RN

Φ(y,s)∂t f (x− y, t − s)dyds+
∫
RN

Φ(y, t) f (x− y,0)dy, (5.2)

∂xi∂x ju(x, t) =
∫ t

0

∫
RN

Φ(y,s)∂xi∂x j f (x− y, t − s)dyds,

and they are seen continuous using similar techniques as before. To compute the time
derivative (5.2), we set ϕ(t,s) :=

∫
RN Φ(y,s) f (x− y, t − s)dy and observed that

d
dt

∫ t

0
ϕ(t,s)ds = lim

ε→0

1
ε

(∫ t+ε

0
ϕ(t + ε,s)ds−

∫ t

0
ϕ(t,s)ds

)
= lim

ε→0

(∫ t+ε

0

ϕ(t + ε,s)−ϕ(t,s)
ε

ds+
1
ε

∫ t+ε

t
ϕ(t,s)ds

)
=
∫ t

0

d
dt

ϕ(t,s)ds+ϕ(t, t).

(2): We divide the integral to the cases close and far away from the singularity:

∂tu(x, t)−∆u(x, t) =
∫ t

0

∫
RN

Φ(y,s)(∂t −∆x) f (x− y, t − s)dyds

+
∫
RN

Φ(y, t) f (x− y,0)dy

=
∫ t

ε

∫
RN

+
∫

ε

0

∫
RN

+
∫
RN

= I + J+K.

Then by Lemma 5.4

|J| ≤max(|∂t f |+ |∆ f |)
∫

ε

0

∫
RN

Φ(y,s)dyds ≤ cε.
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Also

I =
∫ t

ε

∫
RN

Φ(y,s)(∂t −∆x) f (x− y, t − s)dyds

=
∫ t

ε

∫
RN

Φ(y,s)(−∂s −∆y) f (x− y, t − s)dyds
∣∣∣int. by parts, f comp. supp.

=
∫ t

ε

∫
RN

(∂s −∆y)Φ(y,s)︸ ︷︷ ︸
=0

f (x− y, t − s)dyds

−
∫
RN

Φ(y, t) f (x− y,0)dy+
∫
RN

Φ(y,ε) f (x− y, t − ε).

=−K +
∫
RN

Φ(y,ε) f (x− y, t − ε).

Thus
I +K =

∫
RN

Φ(y,ε) f (x− y, t − ε)dy

and

∂tu(x, t)−∆u(x, t) = I + J+K = lim
ε→0

(I + cε +K)

= lim
ε→0

∫
RN

Φ(y,ε) f (x− y, t − ε)dy c.f. Thm 5.5,ex
= f (x, t).

(3):

|u(x, t)| ≤max | f |
∣∣∣∣∫ t

0

∫
RN

Φ(y,s)dyds
∣∣∣∣≤ ct → 0 as t → 0.

□

5.4. Max principle. Let Ω be a bounded domain, recall ΩT = Ω × (0,T ), ∂pΩT =
Ω×{0}∪ (∂Ω× [0,T ]) and consider{

∂tu−∆u = 0 in ΩT ,

u = g on ∂pΩT .

Theorem 5.8 (Weak min/max principle, bounded set). Let Ω be a bounded set, u ∈
C2(ΩT )∩C(ΩT ). If

∂tu−∆u ≥ 0 (supersolution) (5.3)
then u attains its minimum on ∂pΩT , and if

∂t −∆u ≤ 0 (subsolution) (5.4)

then u attains its maximum on ∂pΩT .

Proof. Assume first that u is a strict subsolution, i.e. ∂tu−∆u < 0. Consider Ωτ for
0 < τ < T . If there is (x0, t0) ∈ Ωτ ∪ (Ω×{t = τ}) such that

max
Ωτ

u = u(x0, t0),

then
∂tu(x0, t0)≥ 0 and ∆u(x0, t0)≤ 0.

But that means
∂tu(x0, t0)−∆u(x0, t0)≥ 0,
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a contradiction. Thus the maximum of u in Ωτ has to be on the parabolic boundary, i.e.

max
Ωτ

u = max
∂pΩτ

u.

Then by continuity

max
ΩT

u = lim
τ→T

max
Ωτ

u = lim
τ→T

max
∂pΩτ

u = max
∂pΩT

u.

Consider then the general case ∂tu−∆u ≤ 0. Then we let

vε := u− εt

so that
∂tvε −∆vε = ∂tu−∆u− ε ≤−ε < 0,

i.e. vε is a strict subsolution. Then by first part of the proof

max
ΩT

vε = max
∂pΩT

vε .

Since vε → u uniformly in ΩT , this implies that

max
ΩT

u = max
∂pΩT

u.

The proof of minimum principle for supersolutions is similar. □

Heat equation also has a mean value property when interpreted correctly.

Definition 5.9 (Heat ball).

E(x, t,r) =
{
(y,s) ∈ RN+1 : s < t,Φ(x− y, t − s)>

1
rN

}
.

Remark 5.10. Observe that this does not look like a ball in the usual Euclidean metric.

Theorem 5.11 (Mean value property for the heat equation). If u is a solution to the heat
equation in ΩT , then

u(x, t) =
1

4rN

∫
E(x,t,r)

u(y,s)
|x− y|2

(t − s)2 dyds

for every E(x, t,r)⋐ ΩT .

We omit the proof.
This implies the strong max principle:

Theorem 5.12 (Strong max principle, bounded set). Let u ∈ C2(ΩT )∩C(ΩT ) be a so-
lution to the heat equation in ΩT , and Ω bounded, connected and (x0, t0) ∈ ΩT ∪ (Ω×
{t = T}) such that

u(x0, t0) = max
ΩT

u,

then
u ≡ c in Ωt0.

Remark 5.13. The above theorem holds also for subsolutions. Supersolutions satisfy
strong minimum principle.

In a connected domain, if u ≥ 0 is positive somewhere, then it is positive everywhere
from there on: Infinite speed of propagation.
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Theorem 5.14 (Uniqueness in a bounded set). Let g ∈C(∂pΩT ) and f ∈C(ΩT ). Then
the problem {

∂tu = ∆u+ f in ΩT ,

u = g on ∂pΩT

has at most one solution in C2(ΩT )∩C(ΩT ).

Proof. As before: apply maximum principle on u− v and v−u. □

Theorem 5.15 (Max principle for the Cauchy problem). Let u ∈ C2(RN × (0,T ]) ∩
C(RN × [0,T ]) solve {

∂tu = ∆u in RN × (0,T ),
u = g on RN ×{t = 0} ,

and satisfy the growth estimate

u(x, t)≤ Aea|x|2, (x, t) ∈ RN × [0,T ],

for some a,A > 0. Then

sup
RN×[0,T ]

u = sup
RN

g.

Proof. First consider the special case where

4aT < 1

so that

4a(T + ε)< 1 (5.5)

for some small ε > 0. We fix y ∈ RN , µ > 0 and define

v(x, t) = u(x, t)− µ

(T + ε − t)N/2 e
|x−y|2

4(T+ε−t) .

It was an excercise to show that

∂tv−∆v = 0 in RN × (0,T ).

We consider r > 0, Ω := B(y,r) and ΩT = B(y,r)× [0,T ). The idea is that for large
enough r we have

v ≤ sup
RN

g on ∂pΩT , (5.6)

which lets us apply the maximum principle to get a bound for v. Clearly (5.6) holds at
the bottom of the parabolic boundary, since

v(x,0) = u(x,0)− µ

(T + ε)N/2 e
|x−y|2
4(T+ε) ≤ u(x,0) = g(x) for all x ∈ RN .
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On the other hand, if x is at the lateral part of the parabolic boundary, then |x− y| = r
and 0 ≤ t ≤ T . Thus

v(y, t) = u(x, t)− µ

(T + ε − t)N/2 e
r2

4(T+ε−t)

≤ Aea|x|2 − µ

(T + ε − t)N/2 e
r2

4(T+ε−t)

∣∣∣ |x| ≤ |x− y|+ |y|= r+ |y|

≤ Aea(|y|+r)2
− µ

(T + ε)N/2 e
r2

4(T+ε)

∣∣∣(5.5) :
1

4(T + ε)
> a =⇒ 1

4(T + ε)
= a+ γ

= Aea(|y|+r)2
− µ

(T + ε)N/2 e(a+γ)r2

≤ sup
∂pΩT

g,

where the last inequality follows by taking large enough r. Now we can apply the com-
parison principle to obtain

v(y, t)≤ sup
ΩT

v ≤ sup
RN

g.

Consequently,
u(y, t) = lim

µ→0
v(y, t)≤ sup

RN
g.

If the assumption 4aT ≥ 1 fails, then we repeatedly apply the previous argument in
the smaller time intervals

[0,T ′], [T ′,2T ′], . . . ,

where T ′ = 1/(8a). □

Theorem 5.16 (Uniqueness to the Cauchy problem). Let g ∈ C(RN) and f ∈ C(RN ×
[0,T ]). Then the problem {

∂tu = ∆u+ f in RN × (0,T ),
u = g on RN ×{t = 0} ,

has at most one solution C2(RN × (0,T ))∩C(RN × [0,T ]) satisfying the growth condi-
tion

|u(x, t)| ≤ Aea|x|2, (x, t) ∈ RN × [0,T ].

Proof. Let u and v be solutions. Then u− v solves{
∂t(u− v)−∆(u− v) = 0 in RN × (0,T ),
u− v = 0 on RN ×{t = 0} ,

and
|u(x, t)− v(x, t)| ≤ 2Aea|x|2.

Thus by Theorem (5.15) we have
u− v ≤ 0

and by a similar argument v−u ≤ 0. Thus u = v. □

Remark 5.17. The growth condition is essential. The problem{
∂tu−∆u = 0 in RN × (0,T ),
u = 0 on RN ×{t = 0} ,
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has infinitely many solutions without the growth condition. All the solutions except
u ≡ 0 grow fast as |x| → ∞. For a counter example of Tychonov, see for example
DiBenedetto: PDEs, p146.

5.5. Energy methods and backwards in time uniqueness. Let Ω be bounded and
smooth, and consider {

∂tu−∆u = f in ΩT ,

u = g on ∂pΩT .

We have shown that this has only one solution, but here is another way. If u and v are
solutions, w = u− v solves {

∂tw−∆w = 0 in ΩT ,

u = 0 on ∂pΩT .

Let

I(t) =
∫

Ω

w(x, t)2 dx.

Then

I′(t) =
d
dt

∫
Ω

w(x, t)2 dx =
∫

Ω

d
dt
(w(x, t)2)dx

= 2
∫

Ω

w(x, t)
d
dt

w(x, t)dx

= 2
∫

Ω

w(x, t)∆w(x, t)dx
∣∣∣int by parts

=−2
∫

Ω

|Dw(x, t)|2 dx ≤ 0.

Thus

I(t)≤ I(0) = 0

so that w = u− v = 0 for all 0 ≤ t ≤ T .

Theorem 5.18 (Backwards in time uniqueness). Let u,v ∈C2(ΩT ) solve{
∂tu−∆u = 0 = ∂tv−∆v in ΩT ,

u = v = g on ∂Ω× [0,T ]

and u(x,T ) = v(x,T ). Then

u = v in ΩT .

Proof. (skip)Let w = v−u and

I(t) =
∫

Ω

w(x, t)2 dx.

As above,

I′(t) =−2
∫

Ω

|Dw|2 dx.
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Then

I′′(t) =−2
d
dt

∫
Ω

|Dw|2 dx =−2
∫

Ω

d
dt

|Dw|2 dx

=−4
∫

Ω

Dw · d
dt

Dwdx

=−4
∫

Ω

Dw ·D(
d
dt

w)dx

=4
∫

Ω

∆w
d
dt

wdx

=4
∫

Ω

(∆w)2 dx.

Furthermore, integrating by parts and using Hölder’s inequality, we get∫
Ω

|Dw|2 dx =−
∫

Ω

w∆wdx

≤
∫

Ω

|w| |∆w| dx

≤ (
∫

Ω

|w|2 dx)1/2(
∫

Ω

|∆w|2 dx)1/2.

Thus

(I′(t))2 ≤
(∫

Ω

|Dw|2 dx
)2

≤ 4(
∫

Ω

|w|2 dx)(
∫

Ω

|∆w|2 dx) = I(t)I′′(t). (5.7)

If I(t) = 0, 0 ≤ t ≤ T , then
w = 0 in ΩT

and the claim follows. Otherwise, there exists [t1, t2]⊂ [0,T ] such that{
I(t)> 0, t1 ≤ t < t2,
I(t2) = 0 since w(x,T ) = 0.

Define
Ψ(t) := log(I(t)), t1 ≤ t ≤ t2.

Then

Ψ
′(t) =

I′(t)
I(t)

,

and by (5.7)

Ψ
′′(t) =

I′′(t)
I(t)

− I′(t)2

I(t)2

≥I′(t)2

I(t)2 − I′(t)2

I(t)2 = 0.

Thus Ψ is convex in (t1, t2). I.e.

Ψ((1−λ )t1 −λ t)≤ (1−λ )Ψ(t1)+λΨ(t), t1 < t ≤ t2,0 < λ < 1.

In other notation

log I((1−λ )t1 +λ t)≤ (1−λ ) log I(t1)+λ I(t)

= log I(t1)1−λ I(t)λ .
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From this
0 ≤ I((1−λ )t1 +λ t2)≤ I(t1)1−λ I(t2)λ = 0,

i.e.
I((1−λ )t1 +λ t2) = 0, 0 < λ < 1,

so that I(t) = 0 for all t1 ≤ t ≤ t2, a contradiction. □

5.6. Regularity results.

Theorem 5.19. Let u ∈C2(ΩT ) be a solution to the heat equation in ΩT . Then

u ∈C∞(ΩT ).

Moreover, solutions to the heat equation have derivative estimates (cf. Laplace’s equa-
tion). However, solutions to the heat equation are not necessarily real analytic in t.

5.6.1. Harnack. We denote

Q̃ = B(0,R)× (−3R2,3R2)

Q+ = B(0,R/2)× (2R2 − (R/2)2,2R2 +(R/2)2)

Q− = B(0,R/2)× (−2R2 − (R/2)2,−2R2 +(R/2)2).

Theorem 5.20 (Harnack). Let u ≥ 0 be a solution to the heat equation in Q̃. Then

sup
Q−

u ≤ c inf
Q+

u,

where c = c(N).

The proof is postponed to PDE2.

Example 5.21. “Elliptic” Harnack’s inequality, i.e. where we have same cylinder on
both sides does not hold in the parabolic case: the equation ∂tu−∂xxu = 0 has a family
of non-negative solutions in (−R,R)× (−R2,R2) (translated fundamental solution)

u(x, t) =
1√

t +2R2
e
− (x+ξ )2

4(t+2R2) ,

where ξ is a constant. Let x ∈ (−R/2,R/2), x ̸= 0 and t ∈ (−R2,R2). Then

u(0, t)
u(x, t)

= e
− ξ 2−(x+ξ )2

4(t+2R2) = e
x2+2xξ

4(t+2R2) → 0

as ξ → ∞, for any x < 0. This means that the constant in an elliptic Harnack’s inequality
could not be independent of the solution.

6. WAVE EQUATION

We study the wave equation

∂ttu(x, t) = ∆u(x, t),

where u : Ω× (0,T )→ R, T > 0 and Ω ⊂ RN an open set.

Remark 6.1. The behavior is essentially different from the heat equation: finite speed of
propagation, usually nonsmooth solutions.
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Example 6.2 (Physical interpretations).

N = 1,vibrating string,
N = 2,vibrating membrane,
N = 3,vibrating elastic body.

Let U ⊂ Ω be a smooth set. Then the net acceleration within U is

∂tt

∫
U

u(x, t)dx =
∫

U
∂ttu(x, t)dx

and net contact force is
−
∫

∂Ω

F ·νdS,

where F = (F1, . . . ,FN) is the force caused by the oscillation. According to Newton’s
law “mass × acceleration = total force at the boundary” (as we assume no other forces
are present, and assume mass density to be unity). Thus by divergence theorem∫

U
∂ttudx =−

∫
∂U

F ·νdS =−
∫

U
divF dx.

For elastic bodies, F is a function of the displacement gradient Du, and often for small
Du, the linearization ≈ −aDu. We get

∂ttu = a∆u

and for simplicity we set a = 1 to get the wave equation.
Think about the string: it seems credible that we need

u(x,0) = g(x) the initial displacement,

∂tu(x,0) = h(x) the initial velocity,

to solve the problem.

6.1. N = 1, d’Alembert formula. We study
∂ttu−∂xxu = 0, in R× (0,∞),

u(x,0) = g(x), on R×{t = 0} ,
∂tu(x,0) = h(x), on R×{t = 0} ,

and look for an explicit solution u assuming it is smooth. Observe

(∂t +∂x)(∂t −∂x)u = (∂t +∂x)∂tu− (∂t +∂x)∂xu

= ∂ttu+∂x∂tu− (∂t∂xu+∂xxu)

= ∂ttu−∂xxu.

Denote
v(x, t) := (∂t −∂x)u

so that
∂tv+∂xv = 0.

This is a first order equation, whose solution with

v(x,0) = a(x)

is
v(x, t) = a(x− t).
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Thus {
∂tu(x, t)−∂xu(x, t) = a(x− t), R× (0,T ),
u(x,0) = g(x), R.

This is inhomogeneous transport equation whose solution as we remember is

u(x, t) = g(x+ t)+
∫ t

0
a(−(s− t)+ x− s)ds

= g(x+ t)+
∫ t

0
a(x+ t −2s)ds

= g(x+ t)+
1
2

∫ x+t

x−t
a(y)dy.

Since
a(x) = v(x,0) = ∂tu(x,0)−∂xu(x,0) =: h(x)−g′(x),

we get

u(x, t) = g(x+ t)+
1
2

∫ x+t

x−t
h(y)

= g(x+ t)− 1
2

g(x+ t)+
1
2

g(x− t)+
1
2

∫ x+t

x−t
h(y)dy

=
1
2
(g(x+ t)+g(x− t))+

1
2

∫ x+t

x−t
h(y)dy.

This is d’Alembert’s formula.

Remark 6.3. By d’Alembert’s formula:
• If g ∈ Ck and h ∈ Ck−1, then u ∈ Ck. No instant smoothening in contrast to the

equation.
• The solution at (x, t) is determined by the values of g and h on [x − t,x + t].

Huygens principle. On the other hand every y on the initial boundary only affects
on conical area: Finite speed of propagation.

• Suppose that u and v are solutions. Then u− v solves the problem with zero
initial values. By d’Alembert’s formula this is ≡ 0. Uniqueness!

• Stability: let u have initial values g1,h1 and v have initial values g2,h2:

|u(x, t)− v(x, t)| ≤ 1
2
|g1(x+ t)−g2(x+ t)|+ 1

2
|g1(x− t)−g2(x− t)|

+
1
2

∫ x+t

x−t
|h1(y)−h2(y)| dy

≤ sup
y∈R

|g1 −g2|+ t sup
y∈R

|h1 −h2|

≤ ε + tε = (1+ t)ε.

Example 6.4 (String). 
∂ttu−∂xxu = 0, in R× (0,∞),

u(x,0) = g(x), on R×{t = 0} ,
∂tu(x,0) = 0, on R×{t = 0} ,

where

g(x) =

{
1−|x|2 , −1 ≤ x ≤ 1
0, otherwise.
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Not regular, but let’s apply d’Alembert’s formula anyway:

u(x, t) =
1
2

g(x+ t)+g(x− t))+
1
2

∫ x+t

x−t
h(y)dy =

1
2
(g(x+ t)+g(x− t)).

Draw pictures of u(x, 1
2), u(x,1) and u(x,2).

6.2. Reflection method. Consider
∂ttu−uxx = 0, R+× (0,∞),

u(x,0) = g(x), R+×{t = 0} ,
∂tu(x,0) = h(x) R+×{t = 0} ,
u(0, t) = 0 {x = 0}× (0,∞).

Let us continue the functions to whole R by odd reflection

ũ(x, t) =

{
u(x, t), x ≥ 0, t ≥ 0,
−u(−x, t), x < 0, t ≥ 0,

and define g̃ and h̃ similarly. Also assume that g,h are such that their reflections are C2

and C1 respectively, g(0) = 0 = h(0) and g′′(0) = 0. Then ũ solves
∂tt ũ− ũxx = 0, R× (0,∞),

ũ(x,0) = g̃(x), R×{t = 0} ,
∂t ũ(x,0) = h̃(x), R×{t = 0} ,

and so by d’Alembert’s formula

ũ(x, t) =
1
2
(g̃(x+ t)+ g̃(x− t))+

1
2

∫ x+t

x−t
h̃(y)dy

=

{
1
2(g(x+ t)+g(x− t))+ 1

2
∫ x+t

x−t h(y)dy, x ≥ t ≥ 0,
1
2(g(x+ t)−g(t − x))+ 1

2
∫ x+t

t−x h(y)dy, 0 ≤ x ≤ t
(6.1)

since in the second case∫ x+t

x−t
h̃(y)dy =−

∫ 0

x−t
h(−y)dy+

∫ x+t

0
h(y)dy =

∫ x+t

t−x
h(y)dy.

Example. If h = 0, then

ũ(x, t) =

{
1
2g(x+ t)+g(x− t), x ≥ t ≥ 0,
1
2(g(x+ t)−g(t − x), 0 ≤ x ≤ t

.

Draw the pictures of u(x,0), u(x,1), u(x,2) when

g(x) =

{
1/2+ |x−1.5| 1 ≤ x ≤ 2,
0, otherwise.

6.3. Spherical means. Let N ≥ 2 and u ∈C2(RN × (0,∞)) solve
∂ttu−∆u = 0, in RN × (0,∞),

u(x,0) = g(x), on RN ×{t = 0} ,
∂tu(x,0) = h(x), on RN ×{t = 0} .

(6.2)
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Denote

U(x,r, t) =−
∫

∂B(x,r)
u(y, t)dS(y),

G(x,r) =−
∫

∂B(x,r)
g(y)dS(y),

H(x,r) =−
∫

∂B(x,r)
h(y)dS(y).

Fix x and regard U as a function of r, t. We will observe that then U solves the Euler-
Poisson-Darboux equation (6.3) below. Observe that ∂rrU − N−1

r ∂rU is essentially the
radial Laplacian.

Lemma 6.5. Suppose that u solves (6.2). Then it holds that U ∈C2(R+× [0,∞)) and{
∂ttU −∂rrU − N−1

r ∂rU = 0, in R+×(0,∞),

U = G,∂tU = H, on R+×{t = 0} .
(6.3)

Proof. Clearly initial conditions hold:

U(x,r,0) =−
∫

∂B(x,r)
u(y,0)dS(y) =−

∫
∂B(x,r)

g(y)dS(y) = G(x,r),

∂tU(x,r,0) =−
∫

∂B(x,r)
∂tu(y,0)dS(y) =−

∫
∂B(x,r)

h(y)dS(y) = H(x,r).

When proving the mean value property for Laplacian, we obtained the formula

∂rU(x,r, t) =
r
N
−
∫

B(x,r)
∆u(y, t)dy =

1
ωNrN−1

∫
B(x,r)

∆u(y, t)dy,

so that
lim

r→0+
∂rU(x,r, t) = 0,

which means that ∂rU ∈C(R+× [0,∞)). After similar computations (omitted) for ∂rrU ,
we see that U ∈C2(R+× [0,∞)).

Then

∂r(ωNrN−1Ur) = ∂r(
∫

B(x,r)
∆u(y, t)dy)

= ∂r(
∫ r

0

∫
∂B(x,ρ)

∆u(y, t)dS(y)dρ)

=
∫

∂B(x,r)
∆u(y, t)dS(y)

=
∫

∂B(x,r)
∂ttu(y, t)dS(y)

= ωNrN−1−
∫

∂B(x,r)
∂ttu(y, t)dS(y)

= ωNrN−1
∂ttU.

Since

∂r(rN−1
∂rU)) = rN−1(

N −1
r

∂rU +∂rrU),

this implies the claim. □
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6.4. Solution when N = 3. Letting r → 0 gives the solution to the original equation:

u(x, t) = lim
r→0

U(x,r, t),

h(x) = lim
r→0

H(x,r),

g(x) = lim
r→0

G(x,r).

Lemma 6.6. Suppose N = 3 and u solves (6.2). Denote

Û = rU, Ĝ = rG, Ĥ = rH.

Then 
∂ttÛ −∂rrÛ = 0 R+× (0,∞),

Û = Ĝ,∂tÛ = Ĥ, R+×{t = 0} ,
Û = 0, {r = 0}× (0,∞).

Proof. Using Lemma (6.5) and that N = 3, we get

∂ttÛ = r∂ttU = r(∂rrU +
2
r

∂rU)

= r∂rrU +2∂rU

= ∂r(U + r∂rÛ)

= ∂r(∂r(Û))

= ∂rrÛ .

Initial conditions also hold by Lemma (6.5):

Û(x,r,0) = rU(x,r,0) = rG(x,r) = Ĝ(x,r),

∂tÛ(x,r,0) = r∂tU(x,r,0) = rH(x,r) = Ĥ(x,r),

Û(x,0, t) = lim
r→0

r−
∫

∂B(x,r)
u(y, t)dS(y) = u(x, t) lim

r→0
r = 0.

□

This is one dimensional wave equation so that we may use d’Alembert’s formula with
reflection (6.1) (a brief computation shows that G̃, H̃ satisfy the assumptions):

Û(x,r, t) =
1
2
(Ĝ(r+ t)− Ĝ(t − r))+

1
2

∫ t+r

t−r
Ĥ(y)dy, 0 ≤ r ≤ t.

Thus

u(x, t) = lim
r→0

−
∫

∂B(x,r)
u(y, t)dS(y)

= lim
r→0

U(x,r, t) = lim
r→0

Û(x,r, t)
r

= lim
r→0

(
1
2
(Ĝ(r+ t)− Ĝ(t − r))+

1
2

∫ t+r

t−r
Ĥ(y)dy

)
= Ĝ′(t)+ Ĥ(t)

=
d
dt
(t−
∫

∂B(x,t)
g(y)dS(y))+ t−

∫
∂B(x,t)

h(y)dS(y)

=−
∫

∂B(x,t)
g(y)dS(y)+ t(

d
dt
−
∫

∂B(x,t)
g(y)dS(y)+−

∫
∂B(x,t)

h(y)dS(y)),
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where (change variables: y = x+ tz)
d
dt
−
∫

∂B(x,t)
g(y)dS(y) =

d
dt
−
∫

∂B(0,1)
g(x+ tz)tN−1t−(N−1) dS(z)

=−
∫

∂B(0,1)
Dg(x+ tz) · zdS(z)

=−
∫

∂B(x,t)
Dg(y) · y− x

t
dS(y).

Thus

u(x, t) =−
∫

∂B(x,t)
g(y)dS(y)+ t(

d
dt
−
∫

∂B(x,t)
g(y)dS(y)+ t−

∫
∂B(x,t)

h(y)dS(y)),

=−
∫

∂B(x,t)
(g(y)+Dg(y) · (y− x)+ th(y))dS(y).

This is called the Kirchhoff formula in three dimensions.

Remark 6.7.
• Kirchoff’s formula implies uniqueness and stability (c.f. remark after d’Alembert’s

formula)
• The value at (x, t) is determined by the values of g and h on ∂B(x, t): Hyugen’s

principle. On the other hand, every point y ∈ R3, t = 0, affects the values on{
(x, t) ∈ R3 × (0,∞) : |x− y|= t

}
.

Finite speed of propagation.

6.5. Solution when N = 2. Assume u ∈C2(R2 × (0,∞)) and
∂ttu−∆u = 0 in R2 × (0,∞),

u(x,0) = g(x) on R2 ×{t = 0} ,
∂tu(x,0) = h(x) on R2 ×{t = 0} .

Define ũ : R3 × (0,∞)→ R by trivial extension:

ũ(x1,x2,x3, t) = u(x1,x2, t)

and also define g̃ and h̃ similarly. Then
∂tt ũ−∆ũ = 0 in R3 × (0,∞),

ũ(x,0) = g̃(x) on R3 ×{t = 0} ,
∂t ũ(x,0) = h̃(x) on R3 ×{t = 0} .

Denote
x = (x1,x2) ∈ R2, x̃ = (x1,x2,0) ∈ R3.

By Kirchoff’s formula

u(x, t) = ũ(x̃, t) =−
∫

∂B3(x̃,t)
(g̃(y)+Dg̃(y) · (y− x̃)+ th̃(y))dS(y),

where we integrate over the boundary of 3D ball of radius t, centered at x̃. Here

−
∫

∂B3(x̃,t)
g̃(y)dS(y) =

1
4πt2

∫
∂B3(x̃,t)

g̃(y)dS(y)
∣∣∣g̃(y1,y2,y3) = g(y1,y2)

=
2

4πt2

∫
B2(x,t)

g(y)
√

1+ |Dγ(y)|2 dy,
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where B3 is a 3D ball B2 is a 2D ball, and γ : B2(x, t)→ R,

γ(y) =
√

t2 −|y− x|2,

is the parametric representation of the one half of the sphere. The factor 2 comes from
the fact that sphere has two parts, upper and lower. Now

Dγ(y) =− 2(y− x)

2
√

t2 −|y− x|2

and thus

|Dγ(y)|= |y− x|√
t2 −|y− x|2

.

Further,√
1+ |Dγ|2 =

√
1+

|y− x|2

t2 −|y− x|2
=

√
t2

t2 −|y− x|2
= t(t2 −|y− x|2)−

1
2 .

Thus

−
∫

∂B3(x̃,t)
g̃dS =

1
2πt

∫
B2(x,t)

g(y)√
t2 −|y− x|2

dy =
t
2
−
∫

B(x,t)

g(y)√
t2 −|y− x|2

.

Similarly

t−
∫

∂B3(x̃,t)
h̃dS =

t2

2
−
∫

B2(x,t)

h(y)√
t2 −|y− x|2

dy

and

−
∫

∂B3(x̃,t)
Dg̃(y) · (y− x)dS(y) =

t
2
−
∫

B2(x,t)

Dg(y) · (y− x)√
t2 −|y− x|2

dy.

This gives us the formula

u(x, t) =
1
2
−
∫

B2(x,t)

tg(y)+ t2h(y)+ tDg(y) · (y− x)√
t2 −|y− x|2

dy

for the 2D problem. First solving 3D and then dropping to 2D is called the method of
descent.

Remark 6.8.

• The value at (x, t) is determined by the values on B(x, t) (different from 3D case).
On the other hand, each point y ∈ R2, t = 0, affects the values in the cone{

(x, t) ∈ R2 × (0,∞) : |x− y| ≤ t
}
.

• Also Dg present. Irregularities may focus, i.e. solution may be more irregular
than the initial data.

• The above approach can be generalized to higher dimensions: solve odd N prob-
lem and then use method of descent to get to N −1.
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6.6. Inhomogeneous problem. Assume u ∈C2(RN × (0,∞)) and
∂ttu−∆u = f inRN × (0,∞),

u(x,0) = 0 on RN ×{t = 0} ,
∂tu(x,0) = 0 on RN ×{t = 0} .

Duhamel’s principle: For s ≥ 0, let (x, t) 7→ v(x, t,s) solve
∂ttv(x, t,s)−∆v(x, t,s) = 0, (x, t) ∈ RN × (s,∞),

v(x, t,s) = 0, x ∈ RN ×{t = s} ,
∂tv(x, t,s) = f (x,s) x ∈ RN ×{t = s} ,

(6.4)

and set

u(x, t) =
∫ t

0
v(x, t,s)ds.

Formally, this solves the inhomogeneous problem since

∂tu(x, t) = v(x, t, t)︸ ︷︷ ︸
=0

+
∫ t

0
∂tv(x, t,s)ds =

∫ t

0
∂tv(x, t,s)ds

and

∂ttu(x, t) = ∂tv(x, t, t)+
∫ t

0
∂ttv(x, t,s)ds

= f (x, t)+
∫ t

0
∂ttv(x, t,s)ds,

∆u(x, t) = ∆

∫ t

0
v(x, t,s)ds =

∫ t

0
∆v(x, t,s)ds =

∫ t

0
∂ttv(x, t,s)ds

so that

∂ttu(x, t) = f (x, t)+
∫ t

0
∂ttv(x, t,s) = f (x, t)+∆u(x, t).

Solution to general inhomogeneous problem is then solved by w+ u, where w is the
solution to 

∂ttw−∆w = 0 inRN × (0,∞),

w(x,0) = g(x) on RN ×{t = 0} ,
∂tw(x,0) = h(x) on RN ×{t = 0} ,

obtained by the Euler-Poisson-Darboux equation and spherical means, and u by the
Duhamel’s principle above.

Example 6.9. Inhomogeneous problem:

• N = 1 : By d’Alembert’s formula, equation (6.4) is solved by

v(x, t,s) =
1
2

∫ x+(t−s)

x−(t−s)
f (y,s)dy
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and so by Duhamel’s principle

u(x, t) =
∫ t

0
v(x, t,s)ds

=
1
2

∫ t

0

∫ x+(t−s)

x−(t−s)
f (y,s)dyds

∣∣∣s = t − r

=
1
2

∫ t

0

∫ x+r

x−r
f (y, t − r)dydr

=
1
2

∫ t

0

∫ x+s

x−s
f (y, t − s)dyds.

• N = 3: By Kirchoff’s formula, equation (6.4) is solved by

v(x, t,s) = (t − s)−
∫

∂B(x,t−s)
f (y,s)dS(y)

and so by Duhamel’s principle

u(x, t) =
∫ t

0
v(x, t,s)ds

=
∫ t

0
(t.− s)−

∫
B(x,t−s)

f (y,s)dS(y)ds
∣∣∣ |∂B(x, t − s)|= 4π(t − s)2

=
1

4π

∫ t

0

∫
∂B(x,t−s)

f (y,s)
t − s

dS(y)ds
∣∣∣r = t − s

=
1

4π

∫ t

0

∫
∂B(x,r)

f (y, t − r)
r

dS(y)dr

=
1

4π

∫
B(x,t)

f (y, t −|y− x|)
|y− x|

dy.

6.7. Energy method.

Definition 6.10. Set

I(t) :=
1
2
(
∫

Ω

|∂tu(x, t)|2 + |Du(x, t)|2)dx.

Theorem 6.11 (Conservation of energy). Let Ω be a smooth domain and let u ∈C2(Ω×
[0,T )) solve

∂ttu−∆u = 0
with u = 0 on ∂Ω× [0,T ). Then

I′(t)≡C.

Proof. The proof is a computation:

I′(t) =
1
2

∫
Ω

∂t(|∂tu|2 + |Du|2)dx.

=
∫

Ω

∂tu∂ttu+Du ·D∂tudx
∣∣∣int by parts

=
∫

Ω

∂tu∂ttu−∆u∂tudx

=
∫

Ω

∂tu(∂ttu−∆u)dx

= 0.
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□

Theorem 6.12 (Uniqueness by energy method). Let Ω⊂RN be open and bounded. Then
the problem 

∂ttu−∆u = f in ΩT ,

u(x,0) = g(x), on ∂pΩT ,

∂tu(x,0) = h(x), on Ω×{t = 0} ,

has at most one solution u ∈C2(Ω× [0,T )).

Proof. Let u,v be solutions and set w = u− v. Then w solves
∂ttw−∆w = 0 in ΩT ,

w(x,0) = 0, on ∂pΩT ,

∂tw(x,0) = 0, on Ω×{t = 0} .

Thus by conservation of energy

I(t) =
1
2

∫
Ω

|∂tw|2 + |Dw|2 dx ≡C = I(0) = 0

for all t ∈ [0,T ]. This means that w must be a constant in ΩT , and since w ≡ 0 on
Ω×{t = 0}, it follows that w ≡ 0 in ΩT . □

Finite speed of propagation also follows from the energy method. We denote the cone

C = {(x, t) : 0 ≤ t ≤ t0, |x− x0| ≤ t0 − t}

with fixed x0 ∈RN and t0 > 0. One can now show that external disturbances outside of C
do not affect the value of u at (x0, t0). This follows from Kirchoff’s formula, but energy
method gives a more flexible proof, see Evans: PDEs, Theorem 6 on p84.

Theorem 6.13 (Finite speed of propagation). Let

∂ttu−∆u = 0 in RN × (0,∞).

If
u(x,0) = 0 and ∂tu(x,0) = 0

for all x ∈ B(x0, t0), then

u(x, t) = 0 for all (x, t) ∈C.

7. OTHER WAYS OF REPRESENTING SOLUTIONS

7.1. Fourier series. We will briefly introduce Fourier series in the space L2([−π,π]).
For more details on the statements below, see for example the lecture notes by Juha
Kinnunen: https://math.aalto.fi/~jkkinnun/files/pde.pdf.

In this section the underlying space is C.

Definition 7.1. The space L2([−π,π]) consists of the functions f : [−π,π] → C such
that ∫

π

−π

| f (t)|2 dt < ∞,

where | f (t)| denotes the modulus or length of the corresponding complex number.



60 PARTIAL DIFFERENTIAL EQUATIONS 2021, LECTURE NOTES

Example 7.2. Let f : [−π,π]→ R,

f (t) =

{ 1√
|t|
, t ̸= 0,

0, t = 0.

Then ∫
π

−π

| f (t)|2 dt =
∫

π

−π

1/ |t| dt = ∞,

i.e. f ̸∈ L2([−π,π]).

Definition 7.3. Inner product in L2 is defined as

⟨ f ,g⟩= 1
2π

∫
π

−π

f (t)g(t)dt.

This induces the norm

∥ f∥L2([−π,π])= ∥ f∥L2 =
√

⟨ f , f ⟩=
(

1
2π

∫
π

−π

f (t) f (t)dt
)1/2

=

(
1

2π

∫
π

−π

| f (t)|2 dt
)1/2

,

where we used that for z = (x, iy) ∈ C we have zz = (x+ iy)(x− iy) = x2 − (iy)2 = |z|2.

Recall the following inequalities.
Cauchy-Schwartz/Hölder:

|⟨ f ,g⟩| ≤ ∥ f∥L2 ∥g∥L2 =
1

2π

(∫
π

−π

| f |2 dt
)1/2(∫ π

−π

| f |2 dt
)
.

Triangle inequality:
∥ f +g∥L2 ≤ ∥ f∥L2 +∥g∥L2 .

Next we denote
e j : [−π,π]→ C, e j(t) = ei jt , j ∈ Z.

Recall Euler’s formula

e j(t) = ei jt = cos( jt)+ isin( jt).

Now 〈
e j,ek

〉
=

1
2π

∫
π

−π

ei jteikt dt =
1

2π

∫
π

−π

ei jte−ikt dt

=
1

2π

∫
π

−π

ei( j−k)t dt

=

 1
2π

1
i( j−k)e

it( j−k)
∣∣∣π
−π

= 0 if j ̸= k,

1 if j = k.

Thus
{

e j : j ∈ Z
}

is an orthonormal set in L2([−π,π]).

Definition 7.4. The j:th Fourier coefficient of f ∈ L2([−π,π]) is

f̂ ( j) =
〈

f ,e j
〉
=

1
2π

∫
π

−π

f (t)e−i jt dt, j ∈ Z.

The partial sum of Fourier series is

Sk(t) = Sk f (t) =
k

∑
j=−k

〈
f ,e j

〉
e j =

k

∑
j=−k

f̂ ( j)ei jt , k = 0,1,2, . . . .
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The Fourier series is the limit of the partial sum

lim
k→∞

Sk(t) = lim
k→∞

Sk f (t) = lim
k→∞

k

∑
j=−k

f̂ ( j)ei jt =
j=∞

∑
j=−∞

f̂ ( j)ei jt .

Given k ∈ Z and coefficients α−k, . . . ,αk ∈ C, we call
k

∑
j=−k

αke j

a k:th order trigonometric polynomial. The next theorem says that the k:th partial sum
of Fourier series is the best L2-approximation of a function in the class of k:th order
trigonometric polynomials.

Theorem 7.5 (Best approximation). If f ∈ L2([−π,π]), then

∥ f −Sk f∥L2 ≤

∥∥∥∥∥ f −
k

∑
j=−k

αke j

∥∥∥∥∥
L2

,

whenever αk ∈ C.

Proof. Clearly

f −
k

∑
j=−k

α je j =

(
f −

k

∑
j=−k

f̂ ( j)e j

)
+

k

∑
j=−k

( f̂ ( j)−α j)e j,

where the two functions at the right-hand side are orthogonal in L2([−π,π]) since〈
f −

k

∑
j=−k

f̂ ( j)e j,
k

∑
j=−k

( f̂ ( j)−α j)e j

〉

=
k

∑
j=−k

( f̂ ( j)−α j)
〈

f ,e j
〉
−

k

∑
j,l=−k

f̂ ( j)( f̂ (l)−αl)

=δ jl︷ ︸︸ ︷〈
e j,el

〉
=

k

∑
j=−k

(
〈

f ,e j
〉
−α j)

〈
f ,e j

〉
−

k

∑
j=−k

〈
f ,e j

〉
(
〈

f ,e j
〉
−α j)

= 0.

Thus Pythagorean theorem in Hilbert spaces implies∥∥∥∥∥ f −
k

∑
j=−k

α je j

∥∥∥∥∥
L2

=

∥∥∥∥∥ f −
k

∑
j=−k

f̂ ( j)e j

∥∥∥∥∥
L2

+

∥∥∥∥∥ k

∑
j=−k

( f̂ ( j)−α j)e j

∥∥∥∥∥
L2

≥

∥∥∥∥∥ f −
k

∑
j=−k

f̂ ( j)e j

∥∥∥∥∥
L2

= ∥ f −Sk f∥L2 . □

The previous theorem implies the L2-convergence of Fourier series.

Theorem 7.6 (L2-convergence). If f ∈ L2([−π,π]), then

∥ f −Sk f∥L2 → 0

as k → ∞.
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Proof. Trigonometric polynomials are dense in L2([−π,π]) (out of scope of this course,
cf. Stone-Weierstrass theorem) and so there exists a trigonometric polynomial g such
that

∥ f −g∥L2 ≤ ε.

But then by Theorem 7.5

∥ f −Sk f∥L2 ≤ ∥ f −g∥L2 ≤ ε

provided that k is large enough. □

The previous theorem justifies writing

f (t) =
∞

∑
j=−∞

f̂ ( j)ei jt in L2-sense.

Theorem 7.7. Let f ∈ L2([−π,π]) and f differentiable at t1. Then

f (t1) = lim
k→∞

Sk(t1)

in the pointwise sense.

For the proofs of the following results, see for example https://math.aalto.fi/~jkkinnun/files/pde.pdf.

Remark 7.8.
• If f : R→ C is 2π-periodic and Lipschitz continuous, then

max
t∈[−π,π]

|Sk(t)− f (t)| → 0, when k → ∞,

i.e. Sk → f uniformly.

Theorem 7.9 (Parseval). If f ∈ L2([−π,π]), then

∥ f∥2 =
∞

∑
j=−∞

∣∣ f̂ ( j)
∣∣2 .

Theorem 7.10 (Uniqueness). Let f ,g ∈ L2([−π,π]) and f̂ ( j) = ĝ( j), then

f = g in L2.

7.1.1. Fourier series in real form (vs. complex form). Observe

Sk =
k

∑
j=−k

f̂ ( j)ei jt

= f̂ (0)+
k

∑
j=1

( f̂ ( j)ei jt + f̂ (− j)e−i jt)

= f̂ (0)+
k

∑
j=1

( f̂ ( j)(cos( jt)+ isin( jt))+ f̂ (− j)(cos( jt)− isin( jt))

= f̂ (0)+
k

∑
j=1

( f̂ ( j)+ f̂ (− j))cos( jt)+
k

∑
j=1

i( f̂ ( j)− f̂ (− j))sin( jt),

where
f̂ (0) =

1
2π

∫
π

−π

f (t)dt,



PARTIAL DIFFERENTIAL EQUATIONS 2021, LECTURE NOTES 63

f̂ ( j)+ f̂ (− j) =
1

2π

∫
π

−π

f (t)(e−i jt + ei jt)dt

=
1

2π

∫
π

−π

f (t)2cos( jt)dt

=
1
π

∫
π

−π

f (t)cos( jt)dt,

and

i( f̂ ( j)− f̂ (− j)) =
i

2π

∫
π

−π

f (t)(ei jt − ei jt)dt

=
i

2π

∫
π

−π

f (t)(−2i)sin( jt)dt

=
−i2

π

∫
π

−π

f (t)sin( jt)dt

=
1
π

∫
π

−π

f (t)sin( jt)dt.

Thus we have obtained the following real form Fourier series

Sk =
k

∑
j=−k

f̂ ( j)ei jt =
a0

2
+

k

∑
j=1

(a j cos( jt)+b j sin( jt)),

where

a0 =
1
π

∫
π

−π

f (t)dt,

a j =
1
π

∫
π

−π

f (t)cos( jt)dt,

b j =
1
π

∫
π

−π

f (t)sin( jt)dt.

Remark 7.11.
• If f : R→ R, then there are only real numbers visible in the above form.
• If Fourier series is given in the real form, we can transform it back to the complex

form by recalling

cos( jt) =
1
2
(ei jt + e−i jt), sin( jt) =

1
2i
(ei jt − e−i jt).

7.1.2. Fourier series on the general interval, odd and even functions. If f : [a,b]→ C,
then

Sk(t) =
k

∑
j=−k

f̂ ( j)e
2πi jt
b−a ,

where

f̂ ( j) =
1

b−a

∫ b

a
f (t)e−

2πi jt
b−a dt, j ∈ Z.

This is due to the change of variables. In particular, for f : [−L,L]→ C in the real form

Sk =
a0

2
+

k

∑
j=1

(a j cos(
π jt
L

)+b j sin(
π jt
L

)),
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where

a j =
1
L

∫ L

−L
f (t)cos(

π jt
L

)dt,

b j =
1
L

∫ L

−L
f (t)sin(

π jt
L

)dt.

Recall that a function f : R→ C is odd if

f (−t) =− f (t)

and even if

f (−t) = f (t).

In the Fourier series of odd function, cos-terms vanish i.e.

f (t) =
∞

∑
j=1

b j sin(
π jt
L

)

and for even function, the sin-terms vanish i.e.

f (t) =
a0

2
+

∞

∑
j=1

a j cos(
π jt
L

).

These are called sin- and cos-series.

Example 7.12. Consider

f : [−π,π]→ R, f (t) =

{
−1, −π ≤ t < 0,
1, 0 ≤ t ≤ π.

Then the Fourier series in the real form is

f (t) =
4
π

∞

∑
j=0

sin((2 j+1)t)
2 j+1

,−π < t < π.

Remark 7.13.

• Observe that Fourier series can be formed for discontinuous functions unlike
Taylor’s expansion.

• Fourier series have applications to PDEs as we shall see in Example 7.14 below.

7.2. Separation of variables.
(1) Separation of variables: In rectangular, cylindrical etc. domain separate the vari-

ables: try to find the solution in the form v(x)w(y). Using this we obtain two
simpler separated equations.

(2) Solve the separated equations.
(3) Solve the full problem: Look for a general solution as series. Boundary values

determine the coefficients in the series.

Example 7.14. Consider

u : [0,a]× [0,b]→ R, Ω = (0,a)× (0,b),
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and 

∆u = ∂xxu+∂yyu = 0, Ω

u(x,0) = 0, 0 < x < a
u(x,b) = 0, 0 < x < a
u(0,y) = 0, 0 ≤ y ≤ b
u(a,y) = g(y), 0 ≤ y ≤ b,

where g ∈C1.
Step 1 (separation of variables):
Set u(x,y) = v(x)w(y), then

0 = ∆u(x,y) = v′′(x)w(y)+ v(x)w′′(y)

so that
v′′(x)
v(x)

=−w′′(y)
w(y)

.

Since the left-hand side depends only x and the right-hand side only y, both sides must
equal some constant λ ∈ R. That is,{

v′′(x) = λv(x), v(0) = 0
−w′′(y) = λw(y), w(0) = 0 = w(b).

Step 2 (Solving the separated equations): Case 1: λ < 0: λ =−µ2, µ > 0. Now

w′′(y) = µ
2w(y),

so that w(y) = c1 sinh(µy)+ c2 cosh(µy), where

sinh(x) =
1
2
(ex − e−x), cosh(x) =

1
2
(ex + e−x).

So
0 = w(0) = c2, 0 = w(b) = c1 sinh(µb),

i.e. c1 = c2 = 0.
Case 2: λ = 0:

w′′(y) = 0, w(y) = c1y+ c2, w(0) = 0 = w(b) =⇒ w = 0.

Case 3: λ > 0: λ = µ2,µ > 0. Now{
v′′(x) = µ2v(x)
−w′′(y) = µ2w(y)

which gives {
v(x) = c1 sinh(µx)+ c2 cosh(µx),
w(y) = d1 sin(µy)+d2 cos(µy).

From boundary conditions

v(0) = 0 =⇒ c2 = 0,

w(0) = 0 =⇒ d2 = 0,

and from w(b) = 0 we get that one of the two holds

d1 = 0 =⇒ w(y) = 0 discarded



66 PARTIAL DIFFERENTIAL EQUATIONS 2021, LECTURE NOTES

or
sin(µb) = 0 =⇒ µ =

jπ
b
, j = 1,2, . . . .

Thus {
v(x) = c1 sinh( jπx

b ),

w(y) = d1 sin( jπy
b ).

Thus
u j(x,y) = v(x)w(x) = a j sinh(

jπx
b

)sin(
jπy
b

)

are nontrivial special solutions.
Step 3 (Solving the full problem): The full solution is looked for as a series

u(x,y) =
∞

∑
j=1

a j sinh(
jπx
b

)sin(
jπy
b

). (7.1)

The last boundary condition reads as

g(y) = u(a,y) =
∞

∑
j=1

a j sinh(
jπa
b

)sin(
jπy
b

). (7.2)

Extend g as an odd function to [−b,b]. Then its Fourier series is a sin-series

g =
∞

∑
j=1

b j sin(
jπy
b

), where

b j =
1
b

∫ b

−b
g(y)sin(

jπy
b

)dy =
2
b

∫ b

0
g(y)sin(

jπy
b

)dy. (7.3)

Comparing the coefficients in (7.2) and (7.3), we get

a j sinh(
jπa
b

) =
2
b

∫ b

0
g(y)sin(

jπy
b

)dy

=⇒ a j =
2

sinh( jπa
b )

∫ b

0
g(y)sin(

jπy
b

)dy.

Inserting this into (7.1) gives a representation formula for the solution. This is a formal
solution at this point, as we didn’t consider the convergence and regularity of the limit.

Example 7.15. Separation of variables also sometimes works for nonlinear PDEs. Con-
sider the porous medium equation in RN , N ≥ 2, x ̸= 0,

∂tu = ∆(um), m > 1.

Try u(x, t) = w(x)v(t) so that

v′(t)w(x) = vm(t)∆wm(x).

Thus
v′(t)
vm(t)

= λ =
∆wm(x)

w(x)
.

A solution for v′ = λvm is

v(t) = ((1−m)λ t +a)
1

1−m

for a ∈ R that we take to be positive. Then we solve

∆wm(x) = λw(x).
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We try w(x) = |x|α and compute

Dwm(x) = αm |x|αm−2 x,

D2w(x) = αm(αm−2) |x|αm−4 x⊗ x+αm |x|αm−2 I,

∆w(x) = αm(αm−2+N) |x|αm−2 .

Thus

0 = ∆wm(x)−λw(x)

= αm(αm−2+N) |x|αm−2 −λ |x|α
∣∣∣choose αm−2 = α

= αm(αm−2+N −λ ) |x|α
∣∣∣choose αm−2+N −λ = 0

= 0,

i.e. α = 2/(m−1) and λ = αm(αm−2+N)> 0. Thus for every a > 0,

u(x, t) = w(x)v(t) = |x|α ((1−m)λ t +a)
1

1−m

is a solution. This represents a solution that blows up when (1−m)λ t +a → 0+.

Example 7.16. Separation of variables also sometimes works in terms of addition in-
stead of multiplication. Consider the Hamilton-Jacobi equation:{

∂tu+H(Du) = 0, RN × (0,∞)

u(x,0) = g(x) x ∈ RN ,

where H : RN → R is given. Try

u(x, t) = w(x)+ v(t).

Then
0 = ∂tu(x, t)+H(Du(x, t)) = v′(t)+H(Dw(x)).

Thus

v(t) =−µt +b

u(x, t) =w(x)−µt +b.

In particular, if we select w(x) = x ·a for which H(a) = µ , then

u(x, t) = a · x−H(a)t +b

is a solution for the initial condition g(x)= a ·x+b. Observe that in general the Hamilton-
Jacobi equation is nonlinear and we cannot sum up the solutions.

8. MATLAB

8.1. Getting started.
• Readily installed on the university computers.
• Can be also installed on personal devices via VPN.

– https://www.jyu.fi/digipalvelut/fi/palvelut/ohjelmistot/ohjelmistot/matlab.
• Once the command prompt is started, set “Current directory” from the pull down

menu, for example “U:\Mats230.”.
• If you save data on Matlab, they are now saved to this directory.
• Command diary will save command window input/output to a file.
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8.2. Help.
• The following commands can be used to get help:
doc open interactive manual
lookfor search for keyword in all help entries
help show function’s help entry

• Test it yourself:

>> help eye
eye(N) is the N-by-N identity matrix.
% ... matlab displays usage of the eye

function

>> a = eye(2)
a =

1 0
0 1

8.3. Default variables.
• Reserved variables:
ans Answer of the most recent unassigned calculation
pi Value of π

i or j Imaginary unit
inf Positive infinity
nan Not-a-number

• It is possible to replace the default values of pi, i or j by simply setting for
example pi=2, but this can be confusing if the standard value is also used in the
same context.

8.4. Variables.
• = assigns to the variable on the left the value on the right as we saw above.
• Basic data type is matrix: scalar is 1×1 matrix, vectors N×1 (column) or 1×N

(row).
• semicolon ; at the end of the line means that the result will not be displayed on

the command prompt (comma , or nothing at the end of the line means that it is
displayed).

• Pressing enter executes the command written on the line.
• All the usual operators +,-,*,^ are matrix operations.
• Componentwise operations by adding a dot .*, ./, .^.
• ’ on Hermitean transpose and .’ transpose (same for real matrices).
• . desimal point.
• % comment (you may write notes in the code).
• [ ] creating matrix, collecting block matrix, assigning multiple outputs on vari-

ables.
• whos Display all defined variables.
• clear Clear workspace variables.

>> a = [1 3; 2, 4]
a =

1 3
2 4
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>> x = [5;6]
x =

5 6

>> x2 = a*x
x2 =

23 34

>> x2*x

% Matlab displays error because * was used with
incorrect dimensions for matrix multiplication.

ans =
28 40

>> pi*a
ans =

3.1416 9.4248
6.2832 12.5664

• Plenty of ready functions: For example sin, cos, asin, sqrt, exp, log, abs,
mod.

• See also: help elfun.

>> y = sin(x); %Compute sin from elements of x.
>> y'
ans =

-0.9589 -0.2794
>> x2 .* x
ans =

115
204

>> x2' * x
ans =

319
>> a*[1 + 3i; 2.5]
ans =

8.5000 + 3.0000i
12.0000 + 6.0000i

8.5. Indexing.
• Matrix indexing: you can pick elements using brackets. Indexing begins with 1

in Matlab, not with zero.
• : alone creates a vector with consecutive integers or any specified interval. In

indexing means all the entries in a row or column.

>> a = [1 4 7; 2 5 9; 3 6 9]
a =
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1 4 7
2 5 9
3 6 9

>> a(1, 2) %pick element at row 1, column 2.
ans =

4

>> a(1, :) %pick the first row
ans =

1 4 7

>> a(:, 2) %pick the second column
ans =

4 5 6

>> a(:, 2:end) %pick columns starting from the
second column until the end

ans =
4 7
5 9
6 9

>> b = 1:3 %make a column vector with consecutive
integers 1, 2, 3.

b =
1 2 3

>> a(b, [1,3]) %take columns 1 and 3 with rows in
b

ans =
1 7
2 9
3 9

>> b = [1, 3];
>> a(b, [1,3])
ans =

1 7
3 9

>> a(1:2 ,1:2) = eye(2) %Set a sub -matrix of a equal
to the 2x2 identity matrix.

a =
1 0 7
0 1 9
3 6 9

• Summary:
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a=[1,2,3] Set the variable a to a column vector (1,2,3).

[1,2,3;4,5,6] Matrix
[

1 2 3
4 5 6

]
.

[X;Y] Block matrix
[
X Y

]
.

2:5 A vector (2,3,4,5).
1:3:10 A vector (1,4,7,10).
a(2) 2nd element of a vector.
a(1,2) (1,2):th element of a matrix.
a(1,2) First row of a matrix.
a(:,3)=b Set the third column of a matrix to the value b.
a(3:2;end,:) Matrix formed by every second rows from the third

to the last row of a

8.6. Elementary matrix operations.
• Some common operations:
linspace Linearly spaced vector.
eye Identity matrix.
diag Diagonal matrix or a diagonal of a matrix.
rand Random matrix with elements uniformly distributed

in (0,1).
zeroes Matrix of zeroes.
ones Matrix of ones.
length Length of a matrix.
size Size of a matrix.
repmat Replicate matrix.
find Find nonzero elements.

• See also help elmat.
•

>> a =
0.8147 0.9134 0.2785
0.9058 0.6324 0.5469
0.1270 0.0975 0.9575

>> b = ones (3,1)
b =

1
1
1

>> c = zeros(1, 3)
c =

0 0 0

>> d = [a b;c 42]
d =

0.8147 0.9134 0.2785 1.0000
0.9058 0.6324 0.5469 1.0000
0.1270 0.0975 0.9575 1.0000
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0 0 0 42.0000

>> diag(d)
ans =

0.8147
0.6324
0.9575
42.0000

>> e = diag([pi exp (1)])
e =

3.1416 0
0 2.7183

8.7. Graphics.

• Matlab can be used for visualization.

>> x = linspace (-2*pi, 2*pi, 10);
>> y = sin(x);
>> plot (x,y)
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• Let’s use finer spacing for x variable:

>> x = linspace (-2*pi, 2*pi, 100);
>> y = sin(x);
>> plot (x,y)
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• Lets add another curve and customize settings:

>> hold on %holds the current plot so that
subsequent graphing commands add to the existing
graph.

>> plot(x, 0.5* cos(x), 'r--')
>> axis tight , grid on , box off
>> xlabel 'x'; ylabel 'y'; title 'Example '
>> set(gca , 'tickdir ', 'out');
>> print -depsc example.svg
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y

Example

• For visualization of 2D functions we use meshgrid command.

>> x = [0 1 2 3];
>> y = [8 9 10];
>> [X, Y] = meshgrid(x, y)
X =

0 1 2 3
0 1 2 3
0 1 2 3

Y =
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8 8 8 8
9 9 9 9
10 10 10 10

• Using this:

>> x = linspace (-2*pi, 2*pi, 100); y=x;
>> [X, Y] = meshgrid(x, y)
>> f = sin(X) .* cos(Y) .* exp(-(sqrt(X .^2 + Y

.^2) - 5) .^2);
>> imagesc(x, y, f); colorbar; title 'imagesc '
>> contour(x, y, f); title 'contour '
>> surf(x, y, f); title 'surf'

imagesc

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

contour

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6



PARTIAL DIFFERENTIAL EQUATIONS 2021, LECTURE NOTES 75

8.8. M-files and own functions.
• You can create “M-files” for example mfile.m that includes a list of commands.
• Another type of “M-file” is a function which means that you can call it with

parameters and it returns values.
• You can execute a file by calling its name without .m, so in this case mfile.
• Function is saved in a file with the same name. For example, if our function is

called test, we create test.m.
• To create a function, type edit test on the command prompt. Then type for

example the following function:

%test.m
function d = test(x, y) %function name has to

correspond to the filename
d = x + y;

Now you can call the function from the command prompt:

>> test(1, 2)
ans =

3

>> test([1, 1], [1, 2])
ans =

2 3

• It is also possible to define a function directly using the @ symbol.

>> g = @(x,y) x + y;
>> g(1,2)

ans =
3
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8.9. Loops and logical expressions.
• Loops and logical expressions can be used in Matlab:
if a section code is executed if a condition is true. A condition is true

if it equals 1.
for a section of code is executed while an index goes through a set of

values.
while a section of code is executed while a condition is true.

• In logical conditions you may use for example <, <=, ==, &,|, see help relop.
•
N = 6;
a = eye(N);
for k=1:N %execute code for k=1, 2, ..., N.

j = 1;
while j<k %execute code while j<k

if mod(k, j) == 0
a(k, j) = 1;

end %closes if
j = j+1;

end %closes while
end %closes for

• Logical operations also work for matrices and can be used for indexing.

>> a= 1:5, b = rand (1,5)*5
a =

1 2 3 4 5
b =

4.0736 4.5290 0.6349 4.5669 3.1618

>> a < b
ans =

1 1 0 1 0

>> find(a < b)
ans =

1 2 4

>> a(a < b) = 0

a =
0 0 3 0 5

8.10. Programming strategy.
• For loops are slow in Matlab. If possible, replace them with built-in matrix

operations.
• Not like this:

n = 1100;
x = linspace(0, 2*pi, n);
y = linspace(0, 3*pi, n);
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for i=1:n %nested for loops create mesh , slow.
for j=1:n

X(i, j) = x(i);
Y(i, j) = y(j);
Z(i, j) = sin(x(i)) * cos(y(j));

end
end
mesh(X, Y, Z)

• But like this:

n = 1100;
x = linspace(0, 2*pi, n);
y = linspace(0, 3*pi, n);

[X, Y] = meshgrid(x, y) %create mesh by calling the
meshgrid function , fast.

Z = sin(X) .* cos(Y).
mesh(X, Y, Z)

8.11. Saving and loading data.
• Variables can be saved by the command save and loaded by load.

>> a = 1:5;
>> save test
>> clear
>> a
% Matlab shows error : unrecognized function or

variable 'a'.

>> load test
>> a
a =

1 2 3 4 5

• You can also load data produced by other programs. For example in Excel you
can save data in CSV-form. Read data in Matlab using csvread or dlmread.

9. NUMERICS

We will briefly describe a method that can be used to discretize and obtain approxi-
mate solutions to the Poisson’s equation. Convergence proofs for numerical approxima-
tions (i.e. proofs that the numerical method actually provides something close to a true
solution) require regularity estimates etc. and are beyond our score.

9.1. Laplace equation.
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9.1.1. 1D case. Consider the equation{
∆u = u′′ = f , in (0,1)
u(0) = a,u(1) = b.

(9.1)

Let u : R→ R be a smooth function. By Taylor’s theorem

u(x+h) =u(x)+u′(x)h+
1
2

u′′(x)h2 +
1
6

u′′′(x)h3 +O(h4),

u(x−h) =u(x)−u′(x)h+
1
2

u′′(x)h2 − 1
6

u′′′(x)h3 +O(h4).

Subtracting we get

u′(x) =
1

2h
(u(x+h)−u(x−h))+O(h2)

and summing up

u′′(x) =
1
h2 (u(x−h)−2u(x)+u(x+h))+O(h2).

Next we divide the interval [0,1] into

x j = jh, h =
1

m+1
, j = 0,1 . . . ,m+1,

and denote by u j the approximation for u(x j) that we are searching for. Thus, dropping
the error terms

∆u(x) = u′′(x)≈ 1
h2 (u(x+h)−2u(x)+u(x−h)). (9.2)

and so 9.1 can be discretized as

1
h2



−h2 0 0 0 . . . 0
1 −2 1 0 . . . 0
0 1 −2 1 · · · 0

0 0 1 . . . . . . 0
...

...
... . . . −2 1

0 0 0 0 0 −h2




u0
u1
...

um
um+1

=


a
f1
...
fm
b

 ,

where we have encoded the boundary values on the first and last row and f j = f j(x j). In
the case of zero boundary values, we have 0 = a = b = u1 = u2 and so the above system
reduces to

∆hu = f ,
where ∆h ∈ RM×M, u, f ∈ Rm are as follows

∆h =
1
h2



−2 1 0 0 . . . 0
1 −2 1 0 . . . 0
0 1 −2 1 · · · 0

0 0 1 . . . . . . 0
...

...
... . . . −2 1

0 0 0 0 1 −2


,u =

u1
...

um

 , and f =

 f1
...
fm

 . (9.3)

We want to solve u and know f so

u = ∆
−1
h f ,
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where ∆
−1
h,D−D is the inverse of the matrix ∆h. If we have nonzero Dirichlet condition

u(0) = a, we get from (9.2)

u′′(h) =
1
h2 (a−2u(h)+u(2h)) =

1
h2 (−2u(h)+u(2h))+

a
h2

and moving a/h2 into f ,we can still write the equation in the form ∆hu=( f1−a/h2, f2, . . .)
T .

9.1.2. 2 dimensional case. Consider the equation{
∆u(x) = f (x) in Ω = (0,1)× (0,1).
u(x) = g on ∂Ω.

(9.4)

Set
m1,m2 ∈ N, h1 =

1
m1 +1

, h2 =
1

m2 +1
.

Now it is convenient to write the approximate values u(ih1, jh2)≈ ui, j as

U :=Uh1,h2 =

 u1,1 . . . u1,m2
... . . . ...

um1,1 . . . um1,m2

 , i = 1, . . . ,m1, j = 1, . . . ,m2

Approximating like in the 1D-case, we have

∂x1x1u(ih1, jh2)≈
1
h2

1
(ui+1, j −2ui, j +ui−1, j),

∂x2x2u(ih1, jh2)≈
1
h2

2
(ui, j+1 −2ui, j +ui, j−1). (9.5)

Assuming that u has zero boundary values (i.e. u0, j = u j,0 = 0 for all i, j), the above can
be written in matrix form

∂x1x1U ≈ ∆h1U,

∂x2x2U ≈U∆
T
h2
,

where ∆h1 is the matrix defined at (9.3). Thus we get a discretization for the 2-dimensional
Laplacian

∆u ≈ ∆h1,h2U := ∆h1U +U∆
T
h2
. (9.6)

We want to solve for U and therefore wish to write ∆h1,U +U∆T
h2,

in the form matrix
* vector since this is then easy to solve by inverting the matrix. To this end, let us denote
the vector

T (U) = (u1,1, . . . ,um1,1,u1,2, . . . ,um1,m2)
T ∈ Rm1m2 (9.7)

i.e. write the matrix U as a vector by putting the columns at the top of each other (In
Matlab simply U(:)).

Lemma 9.1. Let A ∈ Rm1×m2 , U ∈ Rm1×m2, B ∈ Rm2×m2 . Then

T (AUBT ) = (B⊗A)T (U)

where

B⊗A =


b11A b12A . . . b1m1A
b21A b22A . . . b2m2A

...
...

...
bm21A bm22A . . . bm2m2A

 .

Proof. Write down carefully both sides. □
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Using the lemma, we have by (9.6)

T (∆h1,h2U) = T (∆h1U +U∆
T
h2
)

= T (∆h1UIT
m2

+ Im1U∆
T
h2
)

∣∣∣lemma

= IT
m2

⊗∆h1T (U)+∆
T
h2

Im1T (U)

= (Im2 ⊗∆h1 +∆h2 ⊗ Im1)T (U),

where Im1 ∈ Rm1×m1 , Im2 ∈ Rm2×m2 are identity matrices. In the case h = h1 = h2, we
have m1 = m2 and obtain from above

T (∆h1,h2U) = (Im ⊗∆h +∆h ⊗ Im)T (U)

=




∆h 0 . . . 0
0 ∆h . . . 0
...

... . . . ...
0 0 . . . ∆h

+


(∆h)11I (∆h)12I . . . (∆h)1mI
(∆h)21I (∆h)22I . . . I

...
... . . . ...

(∆h)m1I (∆h)m1I . . . (∆h)mmI


T (U)

∣∣∣def. of ∆h

=




∆h 0 . . . 0
0 ∆h . . . 0
...

... . . . ...
0 0 . . . ∆h

+
1
h2



−2I I 0 0 . . . 0
I −2I I 0 . . . 0
0 I −2I I · · · 0

0 0 I . . . . . . 0
...

...
... . . . −2I I

0 0 0 0 I −2I




T (U)

=
1
h2



X I 0 0 . . . 0
I X I 0 . . . 0
0 I X I · · · 0

0 0 I . . . . . . 0
...

...
... . . . X I

0 0 0 0 I X


T (U) =: AT (U), (9.8)

where

X = h2
∆h − I =



−4 1 0 0 . . . 0
1 −4 1 0 . . . 0
0 1 −4 1 · · · 0

0 0 1 . . . . . . 0
...

...
... . . . −4 1

0 0 0 0 1 −4


.

On the otherhand, since u solves 9.8, we should have

T (∆h1,h2U)≈ T (F),

where

F =

 f1,1 . . . f1,m2
... . . . ...

fm1,1 . . . fm1,m2

 , fi, j = f (ih1, jh2).

Thus T (U) can be solved from 9.8 by inverting the matrix A, i.e.

T (U) = A−1T (∆h1,h2U) = A−1T (F).
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If the boundary data is not zero, it has to be taken into account in the approximation
9.5. We have

∂x1x1u(h1, jh2)≈
1
h2

1
(ui+1, j −2ui, j +ui−1, j)

=
1
h2

1
(ui+1, j −2ui, j +g(0, jh2),

∂x1x1u(m1h1, jh2)≈
1
h2

1
(g(1, jh2)−2ui j +ui−1, j),

∂x2x2u(ih1,h2)≈
1
h2

2
(ui, j+1 −2ui, j +ui, j−1)

=
1
h2

2
(ui, j+1 −2ui, j +g(ih1,0)),

∂x2x2u(ih1,m2h2)≈
1
h2

2
(g(ih1,1)−2ui j +ui, j−1).

Moving g to the left-hand side and writing in matrix form, we obtain this time

−G+∂x1x1U ≈ ∆h1U,

−G+∂x2x2U ≈ ∆
T
h2

U,

where

G =

 g1,1 . . . g1,m2
... . . . ...

gm1,1 . . . gm1,m2

 , gi, j =



h−2
1 g(0, jh2), i = 1,

h−2
1 g(1, jh2), i = m1,

h−2
2 g(ih1,0), j = 1,

h−2
2 g(ih1,1), j = m2,

0, otherwise.

Thus we can do the same computations as in the case of zero boundary values, and obtain
that

T (U) = A−1T (∆h1,h2U) = A−1(T (F −G)) =: A−1T (b). (9.9)

Example 9.2. Let us solve the equation

{
∆u = f (x,y) in (0,1)× (0,1),
u = g(x,y) on ∂ (0,1)× (0,1),

where g(x,y) = 1−|1−2x| and f (x,y) = 0.
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%solver.m

%the problem data
g = @(x, y) (1 - abs(1 - 2*x));
f = @(x, y) 0;

m1=30;
m2=30;
h1 = 1/(m1+1);
h2 = 1/(m2+1);

%We begin by creating the matrices D_h_1 and D_h_2
defined in (9.3).

%The diag(v, k) command creates a matrix whose k:th
diagonal is the vector v. (the main diagonal
corresponds to k = 0).

D1 = (-diag(2 * ones(m1, 1)) + diag(ones(m1 -1, 1), 1) ...
+ diag(ones(m1 -1, 1), -1)) / h1^2;

D2 = (-diag(2 * ones(m2, 1)) + diag(ones(m2 -1, 1), 1) ...
+ diag(ones(m2 -1, 1), -1)) / h2^2;

%We create the matrix A as in computation (9.7). The
Kronecker tensor product , denoted by \otimes in the
lecture note , is achieved by kron function. Sparse
format saves memory for matrices with many zeros.

A = sparse(kron(eye(m2), D1) + kron(D2 , eye(m1)));

%Next we create the matrix b in (9.9).
b = zeros(m1 , m2);
for i=1:m1
for j=1:m2
b(i, j) = f(i*h1 , j*h2) ...
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- (g(0, j*h2) * (i == 1) ...
+ g(1, j*h2) * (i == m1))/ h1^2 ...

- (g(i*h1, 0) * (j == 1) ...
+ g(i*h1 , 1) * (j == m2))/ h2^2;

end
end

%Reshape the matrix to vector format as defined in (9.7)
.

Tb = reshape(b, m1*m2, 1);

%Solve TU from the equation (9.9). One could also write
TU = inv(A)*Tb, but the following implementation is
recommended for solving equations.

TU=A\Tb;

%Reshape the solved function into matrix format.
U = reshape(TU , m1 , m2);

%To plot the function , we must still include the
boundary values.

u = zeros(m1+2, m2+2);
u(2:m1+1, 2:m2+1) = U; %interior
u(:, 1) = g(0:h1:1, 0); %u(i, 1) = g(i, 0)
u(:, m2+2) = g(0:h1:1, 1);
u(1, :) = g(0, 0:h2:1);
u(m1+2, :) = g(1, 0:h2:1);

mesh(linspace (0,1,m1+2), linspace (0,1,m2+2), u');
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