Metriset avaruudet, Exercise set 2

14.9. 2022

1. Let $d_{S N C F}$ be the metric on \mathbb{R}^{2} from the first problem of the first exercise set. Describe the balls $B(x, 1)$ with respect to this metric when $x \neq 0$.
2. Show that each closed ball in a metric space is a closed set and that each set that only contains a single point (a one-point set) is also closed.
3. Show that each finite intersection of open sets is open.
4.

a) Show that E is open if and only if $E=\operatorname{int} E$. Here int E is the collection of all x for which there exists $r>0$ so that $B_{d}(x, r) \subset E$, the set of interior points of E.
b) Show that E is closed if and only if $E=\bar{E}$. Here \bar{E} is by definition the intersection of all closed sets that contain E.
5.
a) Show that

$$
\bar{E}=E \cup \partial E=\operatorname{int} E \cup \partial E .
$$

Here ∂E is the collection of those points in X that are neither interior points of E nor interior points of $X \backslash E$.
b) Show that $\partial(X \backslash E)=\partial E$.
6. Show that E is closed if and only if $\partial E \subset E$.
7. The discrete metric gives us examples of (X, d) for which

$$
\overline{B(x, r)} \neq \bar{B}(x, r)
$$

for some x and $r>0$. Give a similar example where $X=A \subset \mathbb{R}^{2}$ and d is the metric induced by the Euclidean metric of \mathbb{R}^{2}.
8. Let (X, d) be a metric space and $0<\alpha<1$. Set

$$
d^{\prime}(x, y):=d(x, y)^{\alpha}
$$

when $x, y \in X$. Show that also d^{\prime} is a metric.
Hint: show first that $(a+b)^{\alpha} \leq a^{\alpha}+b^{\alpha}$ when $a, b \geq 0$ e.g. by

1) by first verifying the inequality when $a+b=1$
$2)$ and then the general case via the special case.
