Metriset avaruudet, Excercise set 4 28.9. 2022

- **1.** Let (X, d_X) , (Y, d_Y) be metric spaces and $C \subset X$, $D \subset Y$ closed sets. Show that $C \times D$ is closed in the product space $X \times Y$ with respect to the natural induced metrics, see VII.5.
- **2.** Let (X, d_X) , (Y, d_Y) be metric spaces $E \subset X$, $F \subset Y$. Determine $\partial(E \times F)$ with respect to the natural metrics on $X \times Y$.
- **3.** Show that each converging sequence is a Cauchy sequence.
- 4. Show that each Cauchy sequence is bounded.
- 5. Give an example of a sequence $(x_k)_k$ of points on the real line so that the sequence is not a Cauchy sequence but, nevertheless,

$$\lim_{k \to \infty} |x_k - x_{k+1}| = 0.$$

- 6. Show that each uniformly continuous map maps Cauchy sequences to Cauchy sequences.
- 7. Let δ be the discrete metric on $X = \mathbb{R}^2$. Which sequences are Cauchy sequences? Explain.
- 8. Consider the norms

$$||f||_1 := \int_0^1 |f(t)| dt$$

and

$$||f||_{\infty} := \max_{t \in [0,1]} |f(t)|$$

on $X = C^0([0, 1])$. Show that these two norms are not equivalent. How is this possible?