Metriset avaruudet, Exercise set 5 5.10. 2022

- 1. Let (X, d_X) , (Y, d_Y) be metric spaces. Show that the product space $X \times Y$ is complete with respect to the usual induced metric $(d_1, d_2 \text{ or } d_\infty)$ if and only if both X and Y are complete.
- **2.** Show that the metric space (\mathbb{R}^n, d_E) is complete when $n \ge 2$ using the fact that $(\mathbb{R}, |.|)$ is complete.
- **3.** Give an example of homeomorphic metric spaces (X, d_X) ja (Y, d_Y) so that the former one is complete but the latter one is not complete.
- 4. Let (X, d) be a complete metric space and let

$$X \supset E_1 \supset E_2 \supset \dots$$

be nested non-empty closed sets. Assume that

$$\operatorname{diam}(E_j) \to 0$$

when $j \to \infty$. Show that

$$\bigcap_{j=1}^{\infty} E_j = \{x_0\}$$

for some $x_0 \in X$.

- 5. Let (X, d_X) be a non-empty metric space $E \subset X$. Show that E is dense if and only if $E \cap U \neq \emptyset$ for each non-empty open set U.
- **6.** Consider \mathbb{R} equipped with the discrete metric. Is $\mathbb{Q} \subset \mathbb{R}$ dense? Why?
- 7. Let $E \subset X$ be dense with respect to d_X and let $f : (X, d_X) \to (Y, d_Y)$ continuous and onto. Show that f(E) is dense in Y. Do we need the assumption that f is onto? What about continuity?
- 8. Let $f : \mathbb{R} \to \mathbb{R}$ be continuous with respect to the usual Euclidean metrics. Show that the graph

$$G(f) = \{(x, f(x)) : x \in \mathbb{R}\}$$

of f is a closed set in \mathbb{R}^2 with respect to d_E . Hint: consider the mapping F(x, y) := y - f(x).