Metriset avaruudet, Excercise set 6 12.10. 2022

- **1.** Let (X, d) be a compact metric space. Let $E \subset X$ be closed. Show that E is compact.
- **2.** Let (X, d) be a metric space, $K \subset X$ be compact and $E \subset X$ be closed. Show that $E \cap K$ is compact.
- **3.** Let (X, d) be a metric space and $K_1, \ldots, K_n \subset X$ be compact sets. Show that $\bigcup_{i=1}^n K_i$ is compact.
- 4. Let (X, d_X) and (Y, d_Y) be metric spaces. Equip $X \times Y$ with one of the metrics d_1, d_2, d_∞ . Show that $X \times Y$ is compact.
- 5. Let (X, d_X) and (Y, d_Y) be metric spaces and $f : X \to Y$ a homeomorphism. Show that X is compact if and only if Y is compact.
- **6.** Let (X, d) be a metric space and $K \subset X$ be compact. Show that there exist $x, y \in K$ so that d(x, y) = diam(K).
- 7. Let $X = \{f \in C^0([0,1]) : ||f||_{\infty} \leq 1\}$. Equip X with the metric d_{∞} induced by the norm $||.||_{\infty}$. Then X is both closed and bounded. Show that X is not sequencially compact.
- 8. Go through the construction of the ternary $\frac{1}{3}$ -Cantor set K and explain why K is both compact and non-empty.