Metriset avaruudet, Excercise set 7
 19.10. 2022

1. Let (X, d) be a metric space, $E \subset X$ be connected, and let $x \in \partial E$. Show that $E \cup\{x\}$ is connected.
2. Explain the necessary modifications to your proof for Problem 1 to prove: if E is connected and $E \subset A \subset \bar{E}$, then also A is connected.
3. Show that a metric space (X, d) is connected if and only if \emptyset and X are the only subsets of X that are both open and closed.
4. Show that $\mathbb{R}^{n} \backslash\{0\}$ equipped with the Euclidean metric is pathwise connected when $n \geq 2$.
5. Let $U \subset \mathbb{R}^{n}$ be non-empty and open with respect to the Euclidean metric. Fix $x_{0} \in U$ and let V the collection of those points of U that can be joined to x_{0} with a path in U, and W the collection of those points of U that cannot be joined to x_{0} with a path in U. Show that both V and W are open.
6. Show that every connected open set in the Euclidean space \mathbb{R}^{n} is path-connected.
7. We say that a path $\gamma:[a, b] \rightarrow \mathbb{R}^{n}$ is a broken line if there exist $k \geq 2$ and $a=a_{0}<a_{1}<\ldots<a_{k}=b$ so that the restriction of γ to each $\left[a_{j}, a_{j+1}\right]$ is of the form $\left.\gamma(t)=x_{j}+\frac{t-a_{j}}{a_{j+1}-a_{j}}\left(x_{j+1}-x_{j}\right)\right)$. Use the previous problem to show that all pairs of points in a given open, non-empty connected set of \mathbb{R}^{n} (with respect to the Euclidean metric) can be joined by a broken line.
8. Explain why the infimum of the lengths of the broken lines joining given points x, y gives a metric in a non-empty, connected, open subset of the Euclidean space \mathbb{R}^{n}. Notice that the length of a broken line can be computed since it is piecewise C^{1}.
