Metriset avaruudet, Excercise set 7 19.10. 2022

- **1.** Let (X, d) be a metric space, $E \subset X$ be connected, and let $x \in \partial E$. Show that $E \cup \{x\}$ is connected.
- **2.** Explain the necessary modifications to your proof for Problem 1 to prove: if E is connected and $E \subset A \subset \overline{E}$, then also A is connected.
- **3.** Show that a metric space (X, d) is connected if and only if \emptyset and X are the only subsets of X that are both open and closed.
- 4. Show that $\mathbb{R}^n \setminus \{0\}$ equipped with the Euclidean metric is pathwise connected when $n \geq 2$.
- 5. Let $U \subset \mathbb{R}^n$ be non-empty and open with respect to the Euclidean metric. Fix $x_0 \in U$ and let V the collection of those points of U that can be joined to x_0 with a path in U, and W the collection of those points of U that cannot be joined to x_0 with a path in U. Show that both V and W are open.
- **6.** Show that every connected open set in the Euclidean space \mathbb{R}^n is path-connected.
- 7. We say that a path $\gamma : [a, b] \to \mathbb{R}^n$ is a broken line if there exist $k \ge 2$ and $a = a_0 < a_1 < \ldots < a_k = b$ so that the restriction of γ to each $[a_j, a_{j+1}]$ is of the form $\gamma(t) = x_j + \frac{t-a_j}{a_{j+1}-a_j}(x_{j+1}-x_j))$. Use the previous problem to show that all pairs of points in a given open, non-empty connected set of \mathbb{R}^n (with respect to the Euclidean metric) can be joined by a broken line.
- 8. Explain why the infimum of the lengths of the broken lines joining given points x, y gives a metric in a non-empty, connected, open subset of the Euclidean space \mathbb{R}^n . Notice that the length of a broken line can be computed since it is piecewise C^1 .